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Lignin-First Fractionation of Softwood Lignocellulose
Using a Mild Dimethyl Carbonate and Ethylene Glycol
Organosolv Process
Alessandra De Santi,[a] Maxim V. Galkin,[a] Ciaran W. Lahive,[b] Peter J. Deuss,[b] and
Katalin Barta*[a, c]

Introduction

The development of profitable and sustainable biorefineries

relies on the optimal valorization of the three major lignocellu-
lose constituents: cellulose, hemicellulose, and lignin.[1] Among

these, lignin valorization has proven to be a major bottleneck
owing to its complex nature and recalcitrant structure, espe-

cially under classical processing conditions.[2, 3] Several elegant

strategies have been reported for the depolymerization of or-
ganosolv lignins;[2, 4, 5] however, the obtained monomer yields

were not only dependent on the method used but also on the
original lignocellulose fractionation conditions.[4, 6–8] To over-

come this, recent attention has shifted to lignin-first strategies,
which accomplish the depolymerization of lignin in its native
form during the lignocellulose fractionation process.[9] These

novel strategies focus on the use of a heterogeneous metal
catalyst and hydrogen gas.[10–19]

Previously, we have found that stabilization of reactive inter-
mediates during acid-catalyzed depolymerization of lignin

leads to suppression of the recondensation processes and im-

proved aromatic monomer yield (Figure 1 and Figure S2 in the

Supporting Information).[20] Specifically, acidolysis was studied
using various lignin model compounds and organosolv lignins

with triflic acid (TfOH) or iron(III) trifluoromethanesulfonate
(Fe(OTf)3) as the catalyst, in dioxane or toluene.[6, 8, 20–22] Trap-

ping the as-formed reactive 2-(4-hydroxy-3-methoxyphenyl)-

acetaldehyde and 2-(4-hydroxy-3,5-dimethoxyphenyl)acetalde-
hyde (G- and S-C2-aldehydes, respectively) with various diols,

prominently ethylene glycol (EG), resulted in the formation of
the corresponding cyclic acetals comprising either a guaiacyl

(G-C2 acetal) or a syringyl (S-C2-acetal) moiety, respectively
(Figure 1).

These compounds could be produced in up to 35.5 % yield

from various organosolv lignin sources[8] .The yield of the ob-
tained products was correlated, among others, with the b-O-4’
moiety content of the lignins, which strongly depended on the
method of isolation.[8] Moreover, not all the employed lignin

extraction methods were efficient enough, depending on the
source. Starting from softwood, first organosolv lignin was ex-

tracted with limited efficiency (33 % from cedar). The G-C2-
acetal yield obtained in the next step was 17 wt %, meaning a
total 2 wt % product yield compared with the lignin content of

the raw biomass (Figure 2). Also, NMR studies showed partial
condensation in the final lignins as a result of the isolation pro-

cedure.[6–8]

Therefore, we set out to investigate the application of our

previously developed method for the direct treatment of soft-

wood lignocellulose, skipping the tedious lignin isolation step
(Figure 2). Such a strategy would not differ much from a classi-

cal lignocellulose fractionation process except the reaction
conditions, catalyst, and added stabilization agent (EG) should

be specifically tailored to deliver the desired monophenolic G-
C2-acetal instead of organosolv lignin. One related example

A mild lignin-first acidolysis process (140 8C, 40 min) was devel-
oped using the benign solvent dimethyl carbonate (DMC) and
ethylene glycol (EG) as a stabilization agent/solvent to produce

a high yield of aromatic monophenols directly from softwood
lignocellulose (pine, spruce, cedar, and Douglas fir) with a de-
polymerization efficiency of 77–98 %. Under the optimized con-
ditions (140 8C, 40 min, 400 wt % EG and 2 wt % H2SO4 to pine-

wood), up to 9 wt % of the aromatic monophenol was pro-

duced, reaching a degree of delignification in pinewood of
77 %. Cellulose was also preserved, as evidenced by a 85 % glu-

cose yield after enzymatic digestion. An in-depth analysis of
the depolymerization oil was conducted by using GC-MS,
HPLC, 2 D-NMR, and size-exclusion chromatography, which pro-
vided structural insights into lignin-derived dimers and oligo-
mers and the composition of the sugars and derived mole-

cules. Mass balance evaluation was performed.

[a] A. De Santi, Dr. M. V. Galkin, Prof. Dr. K. Barta
Stratingh Institute for Chemistry, University of Groningen
Nijenborgh 4, Groningen (The Netherlands)
E-mail : k.barta@rug.nl

[b] Dr. C. W. Lahive, Dr. P. J. Deuss
Department of Chemical Engineering (ENTEG)
University of Groningen, Nijenborgh 4, Groningen (The Netherlands)

[c] Prof. Dr. K. Barta
Department of Chemistry, Organic and Bioorganic Chemistry
University of Graz, Heinrichstrasse 28/II, 8010 Graz (Austria)

Supporting information and the ORCID identification number(s) for the
author(s) of this article can be found under :
https://doi.org/10.1002/cssc.201903526.

This publication is part of a Special Issue focusing on “Lignin Valoriza-
tion: From Theory to Practice”. Please visit the issue at http://doi.org/
10.1002/cssc.v13.17

ChemSusChem 2020, 13, 4468 – 4477 T 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim4468

ChemSusChem
Full Papers
doi.org/10.1002/cssc.201903526

http://orcid.org/0000-0002-8046-4248
http://orcid.org/0000-0002-8046-4248
https://doi.org/10.1002/cssc.201903526
http://doi.org/10.1002/cssc.v13.17
http://doi.org/10.1002/cssc.v13.17
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcssc.201903526&domain=pdf&date_stamp=2020-03-31


has been reported in the literature by Watanabe et al.[23] using

a mixture of toluene and methanol as solvent, whereby metha-
nol also acted as a trapping agent and H2SO4 as a catalyst to
produce a noncyclic C2-acetal[24] from Japanese cedar wood
with a monomer yield of approximately 5 wt % to lignin. Be-

cause of the different focus of this study in polymer chemistry,
the effectiveness of the depolymerization method was not
evaluated and no information regarding the quality of the cel-
lulosic residue was provided.

Through systematic investigation of multiple reaction pa-

rameters, we found a novel system that successfully integrates
lignocellulose processing and lignin depolymerization to deliv-

er high yield of monophenolic G-C2-acetal directly from soft-
wood lignocellulose while maintaining cellulose susceptibility
to enzyme hydrolysis as evidenced from hydrolysis studies. Al-

though the use of softwood generally leads to lower monomer
yield compared with hardwood, mainly owing to lower b-O-4’
linkage content, the presence of only G-units leads to exclu-
sively one monomer (G-C2-acetal ; Figure 2). We were able to

replace the previously used 1,4-dioxane and toluene to the

green solvent dimethyl carbonate (DMC) and the corrosive and
expensive triflic acid/triflates to sulfuric acid. The superior per-

formance of the green solvent DMC was rationalized by the
correlations between the solvent parameters and G-C2-acetal

yield. An in-depth analysis of the depolymerization oil was per-

formed to identify lignin dimers and oligomers, as well as car-
bohydrates or derived compounds and a good mass balance

was achieved. The general applicability of the method was
demonstrated with four different softwood species.

Results and Discussion

The two key factors necessary to obtain a high yield of mono-
phenolic products from raw lignocellulose are: a) efficient de-

lignification and b) rapid b-O-4’ bond cleavage. Because both
of these steps depend on multiple factors, an extensive optimi-

zation of the reaction parameters (catalyst type and amount,
EG amount, solvent, reaction time, and temperature) was per-

Figure 1. One of the dominant reaction pathways (C2) during acid-catalyzed depolymerization of lignin with and without ethylene glycol (EG) trapping.

Figure 2. Lignin acidolysis in conjunction with stabilization of reactive intermediates with EG to obtain G-C2-acetal. Starting directly from lignocellulose (one-
step) versus starting from the organosolv lignin (two-step) procedure. [a] Yield based on the initial lignin content; [b] yield based on the lignin extraction effi-
ciency.
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formed to maximize the G-C2-acetal yield and at the same
time maintain high cellulose quality.

C2-acetal production from pinewood: Evaluation of catalysts
and solvents

First, benchmark conditions previously developed for organo-
solv lignin depolymerization (catalyst: Fe(OTf)3, solvent: 1,4-di-

oxane) were evaluated by processing pine lignocellulose with
a catalyst concentration range of 0.075–0.3 mmol (Table 1, en-

tries 1–5), whereby 0.15 mmol was found to be the minimum
requirement to obtain G-C2-acetal yield of 4.8 wt % (Table 1,

entry 3). Then H2SO4, Bi(OTf)3, and p-toluenesulfonic acid (p-
TsOH) were screened as alternatives for Fe(OTf)3

[25] (Table 1, en-

tries 6–8). The use of Bi(OTf)3 provided a similar yield of G-C2-

acetal (5.0 wt % vs. 4.8 wt % for Fe(OTf)3), whereas no G-C2-
acetal was obtained with p-TsOH. Interestingly, sulfuric acid, as

a much cheaper alternative, performed better than Fe(OTf)3

with 5.7 wt % G-C2-acetal yield; therefore, it was chosen for

further optimization.
Our next goal was to find greener alternatives for 1,4-diox-

ane, which is a solvent that is classified to have major known

drawbacks,[26] and at the same time maintaining a high prod-
uct yield. Dimethoxyethane (monoglyme) and toluene per-

formed similar to 1,4-dioxane (G-C2-acetal yield 6.1 wt % and
5.3 wt % respectively ; Table 1, entries 9 and 10) whereas ace-

tone gave a slightly lower yield (4.3 wt %). Very poor G-C2-
acetal yield was obtained in alcohols (Table 1, entries 12, 13

and 19), as previously demonstrated for model compounds.[20]

Previously, etherification of the b-O-4’ motifs at the a-OH posi-
tion was reported when alcohols were used as reaction media

under similar conditions.[6] It is likely that the resulting ethers
are less reactive under these conditions.[7] Treatment of lignin

with EG under acidic conditions was previously reported by Ja-
siukaityte-Grojzdek et al. ,[27] who showed EG incorporation into

the lignin structure in a and g positions of the b’-O-4 linkage,
even leading to cross-linking of lignin moieties. Additionally,
Ono et al.[28] studied the incorporation of EG moieties into

lignin during softwood acid solvolysis to produce modified
lignin, potentially applicable as an amphiphilic polymer and/or
functional gels.

Carbonates have been identified as benign solvents for or-
ganic synthesis,[29–31] and can be synthesized directly from CO2

through sustainable pathways.[31] Previously, these solvents

have proven successful in extracting lignin from sugarcane

bagasse while preserving a good cellulose quality (up to 90 %
glucose yield after enzymatic digestion).[32, 33] In our system,

DMC and diethyl carbonate (DEC) appeared to be outstanding
solvents, reaching 8.0 wt % G-C2-acetal yield (Table 1, entries 14

and 15). Ethylene carbonate (EC) was also considered as a
viable option (Table 1, entry 18). However, the system was chal-

lenging because EC solidified upon cooling down, clogging

the reactor. Therefore, lower-boiling-point carbonates were
considered easier to work with.

Additional analysis was performed to rationalize the role of
the solvent. It has been previously demonstrated that solvent

properties play a key role in solubilization of biopolymers as
well as the liquid-phase reaction rates of biomass-derived com-

pounds. Therefore, we investigated the formation/yield of the

G-C2-acetal and Hildebrand solubility parameter to observe
the effect of the solvent solubilization properties.

Earlier studies of the solvent effects on biomass pretreat-
ment and on solubility of lignins[34@38] have employed the Hil-

debrand solubility parameter (d-value).[39] According to the Hil-
debrand solubility theory, materials with similar d-values will
be able to interact with each other, resulting in solvation, mis-

cibility, or swelling. Solvents employed in this study and their
corresponding d-values are listed in Table S3. The d-values for
lignin can vary from 20 to 28 MPa0.5 depending on the origin
and processing history.[40–42] As a benchmark d-value for the
lignin in our study, we used 25.8 MPa0.5, which was previously
calculated for softwood organosolv lignin by Le et al.[43] Fur-

thermore, d-values for mixtures of solvents with EG (Table S3)
were calculated by averaging the Hildebrand values of the in-
dividual solvents by volume.[44] Interestingly, the d-values for all

screened mixtures were lower than that of lignin and displayed
no correlation with the G-C2-acetal yield, suggesting that G-

C2-acetal formation was independent of the lignin release
from the lignocellulose matrix, whereas several factors can

effect G-C2-acetal yields.

In the study of Brønsted-acid-catalyzed reactions, the role of
solvents in accelerating the reaction rates has been implicated

in a number of ways. It has been shown that the appropriate
choice of solvent can result in a reduced activation energy for

dehydration reactions through improved stabilization of the
transition state resulting from improved proton availability.[35, 45]

Table 1. Catalyst and solvent screening for G-C2-acetal production in
lignin-first acidolysis with EG stabilization using pinewood.

Entry Catalyst Catalyst conc.
[mmol]

Yield of G-C2-acetal
[wt %]

Solvent

1 Fe(OTf)3 0.075 1.5 1,4-dioxane
2[a] Fe(OTf)3 0.075 1.3 1,4-dioxane
3 Fe(OTf)3 0.150 4.8 1,4-dioxane
4 Fe(OTf)3 0.210 4.3 1,4-dioxane
5 Fe(OTf)3 0.300 4.4 1,4-dioxane
6 Bi(OTf)3 0.150 5.0 1,4-dioxane
7 p-TsOH 0.150 0.0 1,4-dioxane
8 H2SO4 0.150 5.7 1,4-dioxane
9 H2SO4 0.150 6.1 dimethoxyethane
10 H2SO4 0.150 5.3 toluene
11 H2SO4 0.150 4.3 acetone
12 H2SO4 0.150 1.1 t-amyl alcohol
13 H2SO4 0.150 0.0 n-butanol
14 H2SO4 0.150 8.0 dimethyl carbonate

(DMC)
15 H2SO4 0.150 8.0 diethyl carbonate

(DEC)
16 H2SO4 0.150 2.0 heptane
17 H2SO4 0.150 2.8 GVL
18 H2SO4 0.150 n.d.[b] EC
19 H2SO4 0.150 1 EG

Reaction conditions: Pine lignocellulose (1.5 g), EG (0.9 mL, 66 wt % to
pine), solvent (29.1 mL), 140 8C, 30 min (excluding 10 min to reach 140 8C
from room temperature); G-C2-acetal yield based on GC-FID calibration
curve with octadecane as internal standard and based on lignin content
of pine lignocellulose; [a] 90 min; [b] not determined.
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In our case, dehydration of the a-position of the b-O-4’ moiety
is the first step towards the formation of the G-C2-acetal prod-

uct, in which the acid-catalyzed reaction in nonaqueous sol-
vents proportionally depends on the relative permittivity of

the solvent.[46]

The highest G-C2-acetal yields can be obtained by using sol-

vents with a low relative permittivity (er<5) and moderate
dipole moments (m). A volcano-shaped plot (Figure 3) of the
solvent properties (relative permittivity and dipole moment)

versus (vs.) G-C2-acetal yields demonstrated that both too
polar and nonpolar solvents have a degenerative effect on the

G-C2-acetal yield. It is likely that solvents that are too polar
raise the acid strength, leading to both condensation of native
lignin and/or product decomposition, whereas nonpolar sol-
vents are ineffective at stabilizing the transition state.

Future studies in this direction could be accelerated by
quantifying the solvation effects in terms of initial and transi-

tion state contributions using experimental and computational
methodologies, thereby elucidating the fundamental basis for

predicting solvent effects and rational solvent design.

Optimization of reaction conditions for pine lignocellulose

Further optimization of the reaction parameters was conduct-

ed, including the EG/H2SO4 ratio, time, and temperature. DMC
was chosen for further optimization owing to its lower boiling

point (91 8C vs. 126 8C for DEC), which potentially facilitates its
recovery.

First, the EG content was varied in the range of 66 to
400 wt % with respect to pine lignocellulose using 0.15 mmol
and 0.3 mmol H2SO4 (1 wt % and 2 wt % relative to pinewood,

respectively; Figure S8). When 1 wt % H2SO4 was used together
with 66 to 400 wt % EG, the G-C2-acetal yield drastically de-

creased from 8 wt % to 2.7 wt %. This can be owing to the

presence of higher EG concentration and its incorporation into
the a-position of b-O-4’ motifs, which leads to a less effective

b-O-4’ cleavage.[6] To verify this, an arylglycerol b-aryl ether
lignin model compound (MC) was subjected to the same con-

ditions (DMC, 140 8C) with 4, 8, 16, and 32 equivalents of EG
(Figure S3), which led to a markedly slower cleavage reaction.

With increasing EG content from 4 to 32 equivalents, the G-C2-
acetal yield decreased from 40 % to 10 %, whereas the EG-

adduct formation was favored (Figure S4–S7). This was in line
with previously observed EG incorporation at the a-position of
the b-O-4’ motifs of lignin.[6, 7, 27, 28] To promote the b-O-4’ cleav-
age reaction in lignin, we increased the amount of catalyst to

2 wt %. At this catalyst concentration, a constant G-C2-acetal
yield (9 wt %) was observed when EG was increased form
66 wt % to 400 wt % relative to pinewood. Because a-etherifi-

cation is a reversible process,[6, 7] the EG-incorporated adduct
becomes less stable in the presence of 2 wt % H2SO4, rendering
the subsequent bond scission easier. Then, the effect of EG
was systematically studied in terms of G-C2-acetal yield and

degree of delignification, from 66 wt % to 590 wt % EG in the
presence of 2 wt % H2SO4 (Table S4 and Figure 4). As shown,

the G-C2-acetal yield was constant (9 wt %) within the studied

EG concentration range. However, when the EG concentration
was increased further to 500–590 wt %, a decrease in monomer

yield to 7 wt % was observed, likely owing to an inefficient
cleavage reaction, as previously explained. Poor G-C2-acetal

yield was found when pure EG was used as solvent (1.1 %)

The degree of delignification (DD) increased from 34 % to
77 % following the increase in EG concentration from 66 to

400 wt %, and from there remained constant up to 590 wt %
(Table S4 and Figure 4). The addition of EG has been previously

shown to be effective for lignin removal from lignocellulose.[47]

Taking into consideration the Hildebrand solubility parameter,

the d-value of the used EG/DMC mixtures increased from 20.6
to 22.9 MPa0.5 as the EG fraction of the reaction mixture in-

creased from 3 to 27 vol. % (66 to 590 wt % with respect to

pinewood) approaching the lignin d-value of 25.8 MPa0.5. Ac-
cordingly, the DD increased in line with the increase in d-value

of the mixtures (Figure 4). However, when EG was maintained
in the range of 66–400 wt %, the G-C2-acetal yield was inde-

pendent of the degree of delignification (Figure 4). This sup-
ports the idea that G-C2-acetal formation is independent of

Figure 4. Degree of delignification (DD) and G-C2-acetal yield versus d-value
of solvent mixture with varying EG content of EG/DMC mixtures (Table S4).
Pine lignocellulose (1.5 g), EG (0.9–8 mL, 66–590 wt % relative to pine), DMC
(22–29.1 mL), H2SO4 (30 mg, 2 wt % relative to pinewood), 140 8C, 30 min (ex-
cluding 10 min to reach 140 8C from room temperature).

Figure 3. Dependence of the C2-acetal yield on solvent properties (dipole
moment m and relative permittivity er). Aprotic solvents considered.
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lignin release from the lignocellulose matrix. b-O-4’
linkages are the most labile and they are likely the

first to be cleaved, releasing the desired G-C2-acetal
monomer. Considering our previous findings on the

effect of EG concentration, we postulate that increas-
ing the EG content to 500 wt % and above promotes

delignification but lignin is likely extracted in a more
stable form (a-etherified with EG), which does not

cleave in the timescale of the reaction. Therefore,

400 wt % EG concentration was considered optimal
to reach a maximum DD and a G-C2-acetal yield

close to the theoretical maximum (98 %) based on
derivatization followed by reductive cleavage (DFRC)

theoretical monomer yield calculations (see Sec-
tion S1.4 and S3). Interestingly, the G-C2-acetal yield
(7.6 mol % to Klason lignin) was also comparable, but

slightly lower than the total monophenol yield of
10.4–8.7 mol % (to Klason lignin content), previously obtained

by the reductive catalytic fractionation (RCF) method for the
same pinewood.[17] This slightly lower yield is expected, as this

particular product is the result of the cleavage of a b-O-4’
moiety by the C2-pathway, whereas the minor C3 pathway

would release Hibbert ketones as additional products

(Figure 7).
Nonetheless, this method delivered G-C2-acetals that are

generally not accessible by RCF, giving access to potentially im-
portant alternative lignin platform chemicals. Overall, the pre-

sented results were comparable with RCF methods applied to
softwood (Table S6). DD values of 54–84 % were previously re-

ported, with aromatic monomer yields of 9–23 wt %. Because

softwood contains only G-units, selectivity to a single aromatic
monomer of 86–93 % was reported.[48–50]

Subsequently, the reaction time (Figure S9) and temperature
(Figure S10) were investigated. Reaction times of longer than

30 min did not improve the G-C2-acetal yield. Interestingly, DD
did not improve with time. With respect to temperature,

140 8C appeared to be the optimal temperature; 120 8C was

too low to give satisfactory delignification and monomer yield
(52.7 % and 4.7 wt %, respectively), whereas 160 8C resulted in a
lower monomer yield likely owing to decomposition of the
product (6.5 wt %).

Overall, the system could be controlled by tuning the EG
and H2SO4 content (Figure 5). The favorable properties of the

DMC solvent facilitated the first dehydration step in acidolysis
by stabilization of the formed carbocation intermediate, as pre-
viously discussed. Then, in the absence of EG or at a higher

acid concentration, undesired condensation reactions occur,
leading to a low target monomer yield. However, in the pres-

ence of EG, the G-C2 aldehyde formed upon acidolysis is stabi-
lized in the form of its cyclic G-C2-acetal and at the optimum

concentration of 400 wt % EG, the maximum DD was reached.
Nevertheless, a-etherification occurred if the EG amount was
increased or the H2SO4 concentration was too low, delivering a

more stable lignin and lower yield of monophenols.
The optimum conditions (400 wt % EG to pinewood, 140 8C,

2 wt % H2SO4, 40 min) were applied to three softwood species
(cedar, spruce, and Douglas fir) to expand the scope of the

method (see Section S3 for characterization data). Depolymeri-

zation efficiency (DE; see the Supporting Information, sec-
tions S1.4 and S3) was determined based on the theoretical

maximum monomer yield by using the DFRC method as a
benchmark[51] (Table 2; see the Supporting Information for cal-

culations). Spruce and Douglas fir were found to need half of

the acid content to perform efficient depolymerization to G-
C2-acetal (Table 2, entries 4 and 6). Importantly, the method re-

sulted in high depolymerization efficiency (77–98 %) for all
tested wood species. Importantly, the obtained results were

found comparable to reductive fractionation methods applied
to softwood, in which a DE of 75–93 % has been reported

(Table S6).[48–50]

Structural insights and identification of byproducts.

We developed a fractionation procedure to analyze the ob-

tained depolymerization oil, as schematically represented in
Figure 6. After filtration of the solid residues, the organic phase

was extracted with water to separate the water-soluble carbo-
hydrate products (aqueous phase, Fraction 2) from lignin depo-

lymerization products (organic phase, Fraction 1). Fraction 1
was extensively characterized as follows. After evaporation of

Figure 5. Tuning the system: A schematic representation of the main parameters that in-
fluence the G-C2-acetal yield and degree of delignification (EG, H2SO4).

Table 2. Testing the generality of the method by using cedar, spruce, and
Douglas Fir as substrates.

Entry Lignocellulose G-C2-acetal yield [wt % to lignin] DE[a] [%]

1 pine 8.8 98
2 cedar 7.1 92
3 spruce 4.0 42
4 spruce[b] 6.7 77
5 Douglas fir 3.7 44
6 Douglas fir[b] 6.7 80

Reaction conditions: lignocellulose (1.5 g), EG (5.4 mL, 400 wt % to pine),
DMC (24.6 mL), H2SO4 (15–30 mg, 1–2 wt % relative to pinewood), 140 8C,
time: 30 min (excluding. 10 min to reach 140 8C from room temperature) ;
G-C2-acetal yield based on GC-FID calibration curve with octadecane as
an internal standard and based on lignin content of pine lignocellulose.
[a] DE (depolymerization efficiency) based on DFRC analysis (see Sec-
tion 1.4 and 3); [b] 1 wt % H2SO4 to lignocellulose.
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the solvent, Fraction 1 was subjected to GC-MS analysis

(before and after derivatization by silylation), heteronuclear
single quantum coherence (HSQC) and heteronuclear multiple

bond correlation (HMBC) NMR experiments as well as size-ex-

clusion chromatography (SEC) analysis.
In the absence of silylation, a signal corresponding to the G-

C2-acetal was the dominant signal in the GC-MS trace (Fig-
ure S11, black), together with traces of 2-methoxy-4-(3-methyl-

5,6-dihydro-1,4-dioxin-2-yl)phenol[52] (dioxene HB2; Figure 7)
derived via the C3-pathway of lignin acidolysis (Figure S2 and

7). Furthermore, the formation of acetals originating from the

reactions of carbohydrates with EG was observed.

Derivatization of the sample by silylation allowed the detec-

tion of additional signals in the higher temperature range of
the GC-MS trace, which was attributed to higher molecular

weight compounds, mainly dimers (Figure S11, pink). Here

also, (C2-acetal-TMS was the main component together with 2-
((trimethylsilyl)oxy)ethyl acetate (ethylene glycol monoacetate).

These findings were also confirmed by 2 D NMR analysis of the
crude reaction mixture (Figure S12 and S13). Further fractiona-

tion of Fraction 1 was necessary to separate the possible
lignin-derived oligomeric products from the monomer and

dimer compounds. Therefore Fraction 1 was additionally ex-

tracted with toluene to give toluene solubles (Fraction 3) and

Figure 6. Fractionation of the depolymerization oil to provide structural insights. Reaction conditions: Pine lignocellulose (1.5 g), EG (5.4 mL, 400 wt % to
pine), DMC (24.6 mL), H2SO4 (30 mg, 2 wt % to pinewood), 140 8C, 30 min (excluding 10 min to reach 140 8C from room temperature).

Figure 7. Proposed structures of the lignin-derived monomers and dimers based on GC-MS and 2 D-NMR analysis (blue: b-O-4’ moiety, C2 and C3 pathway;
green/red: b-5’/b-O-4’ unit, combination of C2 and C3 pathways) in accordance with literature data.[22]
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toluene insolubles (Fraction 4) and both fractions were subject-
ed to SEC analysis followed by HSQC and HMBC NMR studies

and GC-MS analysis after silylation.
According to SEC analysis (Figure S15), Fraction 4 (Fig-

ure S15, dotted black line) mainly consisted of oligomers (Mn =

1000 g mol@1; Mw = 1800 g mol@1, W = 1.8). This was also con-
firmed by the absence of monomers in the GC-MS analysis
after silylation of Fraction 4 (Figure S16). Fraction 4 accounted
for 31 wt % of the initial lignin as gravimetrically determined.

Interestingly, signals in the region of 4.9/105 ppm and 2.7/
40 ppm, attributed to the a and b positions of the G-C2-acetal,

were observed by 2 D NMR (Figure S17 and S14). It is plausible
that these signals were owing to lignin oligomers bearing the
stabilized acetal residue on one end after cleavage of the b-O-
4’ linkage, whereas the other end would represent a phenolic

moiety not cleavable under these conditions. In this case, the
molecular weight would include the acetal functionality. This
acetal group could be further functionalized during possible
valorization of the oligomeric fraction. Also, signals owing to
etherification of the a-position in the b-O-4’ motifs were ob-

served, indicating possible incorporation of EG.[53]

According to the SEC analysis, Fraction 3 (Figure S15, dashed

green line) primarily consisted of low molecular weight species

and did not contain species with a molecular weight higher
than 1000 g mol@1. Indeed, when this fraction was subjected to

silylation (Figure S18), the G-C2-acetal was the major product.
Analysis of oligomeric fragments was performed based on GC-

MS fragmentation patterns and previously reported data.[8, 22]

Based on combined data from NMR and GC-MS analysis (Sec-

tion S7.3), we proposed the presence of structures related to

Hibbert’s ketones (C3-pathway of b-O-4’ cleavage; Figure 7
and Figures S19 and S20) and dimeric species (various path-

ways from b-O-4’/b-5 units ; Figure 7 and Figure S21), consis-
tent with previous literature.[8, 22] Because of the presence of

Ca/Ha and Cb/Hb signals, which were analogous to those of the
C2-acetal (Figures S22 and S23, and Figure S14 for G-C2-acetal
reference; Ca/Ha = C1, Cb/Hb = C2), it is reasonable to propose

structures such as P2 or P7, as also reported previously by
Lahive et al.[22]

The aqueous phase (Fraction 2) was subjected to
HSQC NMR, SEC, and GC-MS analysis, following derivatization

through an acetylation procedure. According to SEC analysis,
Fraction 2 mainly consisted of low molecular weight sugars

and EG (Figure S24) and HSQC NMR indicated the presence of
carbohydrates (Figure S25). Therefore, we focused on the
anomeric carbon region considered as the fingerprint region

for carbohydrate derivatives. Previous work has shown that
during lignocellulose fractionation in butanol, the anomeric

carbons in glucose and xylose display a characteristic shift
comparable with native glucose and xylose.[6, 53] To understand

whether modification at the anomeric carbon occurred in our

system, the native hemicellulose monomers xylose and man-
nose (usually in a 1:3 ratio xylose to mannose in pinewood[54])

and the cellulose monomer glucose were tested under the
previously established reaction conditions (Figure 8). Indeed, a

modification of the native monomers at the anomeric carbon
by both EG and methanol (deriving from partial DMC decom-

position; Figure 8) was seen by combined HSQC and
HMBC NMR experiments (Figure S27, S32, and S35). Further-

more, signals in the NMR spectra of Fraction 2 match with
those of the model reactions of glucose, xylose, and mannose

(Figure S28, S33, and S36). The presence of these modified

sugars in Fraction 2 was also suggested by GC-MS analysis (Fig-
ure S37). In summary, part of the carbohydrates were hydro-

lyzed during the biomass treatment, resulting in xylose, man-
nose, and glucose modified by methanol or EG. The modifica-

tion of xylose with EG during the treatment of sugarcane bag-
asse in a system consisting of EC/EG/H2SO4 has been reported

by Doherty et al.[32]

Next, we investigated the possible reactivity of the solvent,
DMC, in our system. EC was detected in the crude depolymeri-

zation mixture by 2 D NMR, as previously mentioned, which in-
dicated a partial reaction between DMC and EG, releasing

methanol[55] (Figure 8). In our system, 2.2 % of the original DMC
was converted to ethylene carbonate, as quantified by GC-FID
measurements. EG oligomerization products were also detect-

ed, additionally contributing to solvent loss, even though their
precise quantification was not possible. To further understand
the role of DMC in the transformation of carbohydrates under
our established conditions, a test reaction with glucose was

performed (DMC, H2SO4, 140 8C, 20 min) in the absence of EG.
Only native glucose was detected by NMR analysis (Fig-

ure S30). However, considering that DMC partially reacts with
EG to release methanol, in our system, sugars can undergo
Fisher glycosidation both with EG and methanol at the anome-
ric carbon (Figure 8). Quantification of the sugars in the aque-
ous phase (Fraction 2) by HPLC analysis indicated a combined

mannose and xylose yield of 29.8 % compared with the initial
hemicellulose and a glucose yield of 16.3 % compared with ini-

tial cellulose. Because approximately 70 % of purified cellulose
in softwood is crystalline,[56] it is plausible that the sugar mono-
mers mainly originate from the amorphous fraction of carbo-

hydrates, which were partially dissolved and hydrolyzed during
our fractionation process. As mentioned, EG was a reactive

component in the system. The amount of unreacted EG pres-
ent in the system (Fraction 2) was calculated by HPLC was

Figure 8. Compositional study of the reaction liquor: Partial transformation
of DMC with EG to yield EC and methanol. Subsequent methanol and EG in-
corporation into glucose through the Fisher glycosidation.
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52.4 % of the initial EG. An overview of the EG distribution in
the different fractions is shown in Table S7.

Pulp analysis and enzymatic digestion

The carbohydrate-rich solid residues (Figure 6) obtained from

experiments using different amount of EG at a constant G-C2-

acetal yield (0, 66, 300, 400 wt % relative to pinewood) were
characterized in terms of lignin, cellulose, and hemicellulose

content (Table S5) and tested for enzymatic digestibility. Inter-
estingly, EG was also found in the reaction mixture after hy-

drolysis with sulfuric acid, indicating its incorporation into car-
bohydrates.

The EG concentration was broadly constant (0.130–

0.154 wt % relative to the solid residue) and independent of
the amount of the EG used in the parent fractionation experi-

ment (66 to 400 wt %); therefore, it is very likely that the satu-
ration of the reactive groups of the carbohydrates with EG

occurs. Based on the composition of Fraction 2 determined
earlier, EG should also be able to react with the anomeric
carbon of polysaccharides according to the Fischer glycosyla-

tion mechanism. The incorporation of EG in the solid residues
contributes to EG solvent loss (Table S5 and S7).

The characterized dry residual pulps (0, 66, 300 and
400 wt % EG relative to pinewood) were used to screen the en-
zymatic digestibility (Figure S38), in which the residue treated
with the highest EG amount (400 wt %) provided the highest

glucose yield (28.8 %). This result was reasonable given that it
had the lowest lignin content (13.4 %) because lignin is known

to deactivate enzymes.[57] However, subjecting dry pulp to en-

zymatic digestion faces the problem that the surface is less ac-
cessible for the enzyme. Therefore, enzymatic hydrolysis of the

freshly treated feedstock using 400 wt % EG was also per-
formed to obtain the maximum glucose yield of 84.7 %, com-

parable with previous results reported on residual pulp from
lignin extraction under similar conditions.[6, 58] owing to the in-

corporation of EG in the solid residue, the fresh pulp was

tested for enzymatic digestion after the removal of EG by hy-
drolysis with aqueous sulfuric acid to obtain the “free” cellu-
lose available (Section S1.6). No difference in the glucose yield
was observed after 72 h enzymatic digestion when EG was hy-

drolyzed prior to the experiment. This indicated that the incor-
poration of EG into carbohydrates has a negligible effect on

the activity of the enzymes (Figure S39).

Mass balance at optimized conditions

The mass balance was evaluated using results obtained under

optimized conditions (Figure 9). Lignin was converted to a
single monophenolic product (G-C2-acetal) in 9 wt % yield

(Fraction 3), whereas 31 wt % of lignin was converted into

lignin-derived oligomers (Fraction 4) and approximately
23 wt % of lignin remained in the solid residue. These results

indicated that delignification needs to be improved to better
exploit lignin. Approximately 52 % of the initial hemicellulose

content was preserved, of which, 30 % was isolated as a water
solution and 22 % remained in the solid residue. Additionally,

sugar derivatives in the organic phase most likely stem from
hemicellulose. Cellulose also underwent partial dissolution, be-

cause the water phase contained 16 % of the initial cellulose as

glucose derivatives. The main portion of cellulose, approxi-
mately 72 %, remained in the solid residue. The solid residue

was converted to glucose in 85 % yield. Overall, this signified
77 % cellulose conversion. Taking into account the initial bio-

mass composition and the yields of all the fractions, 56 % of
the lignocellulose was valorized.

Conclusions

A mild lignin-first depolymerization process was developed by
using sulfuric acid as a catalyst and ethylene glycol as a stabili-

zation agent in the green solvent DMC. Overall, high lignin de-
polymerization efficiency to G-C2-acetal was reached without

the need to isolate the lignin. A high aromatic monomer yield
of 77–98 % (based on DFRC) was achieved. The relationship be-
tween the G-C2-acetal yield and solvent parameters indicated

that solvents with low relative permittivity (er<5) and moder-
ate dipole moments (m) were most beneficial.

The system was tunable depending on the EG and catalyst
content. The optimum EG concentration of 400 wt % (to pine

wood) resulted in the maximum delignification and G-C2-

acetal yield. The structures of the aromatic dimers and the
modified sugars dissolved in the liquor were identified by a de-

tailed characterization of the depolymerization oil. A partial
loss of DMC owing to its reaction with EG was detected but

the effect of this on downstream processing needs to be eval-
uated.

Figure 9. Product distribution, including mass balance for lignin and carbo-
hydrates. Numbers are reported as percent relative to pinewood. Optimized
reaction conditions: Pine lignocellulose (1.5 g), EG (5.4 mL, 400 wt % to
pine), DMC (24.6 mL), H2SO4 (30 mg, 2 wt % to pinewood), 140 8C, 30 min
(excluding 10 min to reach 140 8C from room temperature).
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In summary, a promising single aromatic compound (G-C2-
acetal) and specific dimers and acetal-functionalized oligomers

were obtained, which can be potentially used for the manufac-
ture of various biobased products or in polymer chemistry. No-

tably, the process allows effective fractionation of softwood
biomass preserving cellulose, as evidenced by a glucose yield

of 84.7 % after enzymatic hydrolysis. In terms of mass balance,
a total glucose yield of 87.8 % was reached together with

51.7 % of hemicellulose and 63.8 % of lignin. Softwood typically

delivers a low yield of aromatic monomers, albeit with high se-
lectivity. The use of hardwood to obtain a higher yield of S-

and G-C2-acetals will be the subject of future studies.

Experimental Section

General procedure for lignin first acidolysis in conjunction
with EG stabilization

In a typical experiment, a 100 mL Parr reactor (material : Alloy 20;
maximum temperature: 350 8C; maximum pressure: 200 bar) with
a glass insert was charged with 1.500 g lignocellulose, 0.015 g octa-
decane as an internal standard (0.50 mL of a stock solution in DMC
0.03 g mL@1), 5.4 mL EG as stabilization agent (400 wt % to pine-
wood), 24.6 mL DMC as solvent and 30 mg sulfuric acid (1.6 mL of
a stock solution in DMC 0.019 g mL@1, 2 wt % to pinewood). After
sealing the reactor, the mixture was heated to 140 8C at a heating
rate of 12 8C min@1 under vigorous stirring. After cooling the reac-
tion mixture for 10 min with an ice-bath, 1 mL was filtered through
Celite and used for GC-FID or GC-MS analysis. The carbohydrate-
rich solid residue (pulp) was collected by filtration and washed
either with only acetone (20 mL) and dried at RT (dry pulp) or ace-
tone (20 mL) and then water (20 mL) and kept wet (fresh pulp) for
enzymatic digestion.

Volatile products analysis and characterization

The liquid phase was analyzed by a Shimadzu GC-2014 equipped
with a FID detector using helium as a carrier gas. Standard set-
tings: 1 mL injection (260 8C), split ratio 50:1, helium flow
0.95 mL min@1. The GC apparatus was equipped with a HP5 column
(30 m V 0.25 mm V 0.25 mm). The following temperature profile was
used: 5 min 60 8C isotherm followed by a 10 8C min@1 ramp for
20 min to 260 8C. The detector temperature was 260 8C. The quan-
tification of the G-C2-acetal was based on a calibration curve per-
formed using G-C2-acetal synthetized and purified using a modi-
fied reported procedure[59] versus an internal standard (octade-
cane). The calibration curve was used as follows:

mG@C2@acetal ¼ ð
AreaG@C2@acetal

Areaoctadecane
> 2:5386Þ>moctadecane ð1Þ

The G-C2-acetal yield was calculated as follows (wt % to lignin con-
tent):

YieldG@C2@acetal ¼
mG@C2@acetal

mbiomasswligninwextractives at 105 2C
> 100% ð2Þ

The calculated G-C2-acetal yield includes the weight added by EG.
The liquid phase was analyzed with a Shimadzu GC-MS equipped
with a HP5 column (30 m V 0.25 mm V 0.25 mm) using the same
method as described for GC-FID.

Pinewood fractionation procedure

To gain additional insight into the remaining components in the
oil residue, a fractionation procedure was applied under optimized
conditions (Figure 6). After filtering off the residual carbohydrate-
rich solid, 15 mL of buffer solution K2HPO4/KH2PO4 pH 8 was added
to the DMC phase (typically 30 mL) to neutralize the catalyst and
extract the water soluble compounds and EG. DCM (5 mL) was
added to help the separation. Two fractions were obtained: Frac-
tion 1 consisting of the organic phase and Fraction 2—the aque-
ous phase. Fraction 1 was characterized by GC-MS (before and
after silylation), HSQC/HMBC NMR, SEC analysis. After characteriza-
tion, Fraction 1 was extracted with toluene (5 mL V 3) resulting in 2
additional fractions (Fraction 3: toluene soluble, Fraction 4: toluene
insoluble) which were analyzed by the same techniques. Fraction 2
was characterized by HSQC/HMBC NMR and GC-MS analysis after
acetylation. To quantify carbohydrates, Fraction 2 (aqueous phase)
was subjected to hydrolysis to release native glucose, xylose, and
mannose (5 wt % aqueous H2SO4, 120 8C, 1 h).

Acknowledgements

K.B. is grateful for financial support from the European Research

Council, ERC Starting Grant 2015 (CatASus) 638076. This work is
part of the research program Talent Scheme (Vidi) with Project

Number 723.015.005 (KB), which is partly financed by The Nether-
lands Organisation for Scientific Research (NWO). The work per-

formed by P.J.D. and C.W.L has partly been conducted within the
framework of the Dutch TKI-BBEI project “CALIBRA”, reference

TEBE117014.

Conflict of interest

The authors declare no conflict of interest.

Keywords: acidolysis · biomass valorization ·
depolymerization · dimethyl carbonate · lignin

[1] V. K. Ponnusamy, D. D. Nguyen, J. Dharmaraja, S. Shobana, J. R. Banu,
R. G. Saratale, S. W. Chang, G. Kumar, Bioresour. Technol. 2019, 271, 462 –
472.

[2] Z. Sun, B. Fridrich, A. De Santi, S. Elangovan, K. Barta, Chem. Rev. 2018,
118, 614 – 678.

[3] L. Shuai, B. Saha, Green Chem. 2017, 19, 3752 – 3758.
[4] W. Schutyser, T. Renders, S. Van Den Bosch, S. F. Koelewijn, G. T. Beck-

ham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852 – 908.
[5] L. Shuai, M. T. Amiri, Y. M. Questell-Santiago, F. H8roguel, Y. Li, H. Kim, R.

Meilan, C. Chapple, J. Ralph, J. S. Luterbacher, Science 2016, 354, 329 –
334.

[6] C. S. Lancefield, I. Panovic, P. J. Deuss, K. Barta, N. J. Westwood, Green
Chem. 2017, 19, 202 – 214.

[7] D. S. Zijlstra, A. De Santi, B. Oldenburger, J. De Vries, K. Barta, P. J. Deuss,
JoVE J. Vis. Exp. 2019, 2019, e58575.

[8] P. J. Deuss, C. S. Lancefield, A. Narani, J. G. de Vries, N. J. Westwood, K.
Barta, Green Chem. 2017, 19, 2774 – 2782.

[9] T. Renders, S. Van Den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels,
Energy Environ. Sci. 2017, 10, 1551 – 1557.

[10] E. M. Anderson, M. L. Stone, M. J. Helsey, G. T. Beckham, Y. Rom#n-Lesh-
kov, ACS Sustainable Chem. Eng. 2018, 6, 7951 – 7959.

[11] Z. Cao, M. Dierks, M. T. Clough, I. B. Daltro de Castro, R. Rinaldi, Joule
2018, 2, 1118 – 1133.

[12] M. V. Galkin, J. S. M. Samec, ChemSusChem 2016, 9, 1544 – 1558.

ChemSusChem 2020, 13, 4468 – 4477 www.chemsuschem.org T 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim4476

ChemSusChem
Full Papers
doi.org/10.1002/cssc.201903526

https://doi.org/10.1016/j.biortech.2018.09.070
https://doi.org/10.1016/j.biortech.2018.09.070
https://doi.org/10.1016/j.biortech.2018.09.070
https://doi.org/10.1021/acs.chemrev.7b00588
https://doi.org/10.1021/acs.chemrev.7b00588
https://doi.org/10.1021/acs.chemrev.7b00588
https://doi.org/10.1021/acs.chemrev.7b00588
https://doi.org/10.1039/C7GC01676J
https://doi.org/10.1039/C7GC01676J
https://doi.org/10.1039/C7GC01676J
https://doi.org/10.1039/C7CS00566K
https://doi.org/10.1039/C7CS00566K
https://doi.org/10.1039/C7CS00566K
https://doi.org/10.1126/science.aaf7810
https://doi.org/10.1126/science.aaf7810
https://doi.org/10.1126/science.aaf7810
https://doi.org/10.1039/C6GC02739C
https://doi.org/10.1039/C6GC02739C
https://doi.org/10.1039/C6GC02739C
https://doi.org/10.1039/C6GC02739C
https://doi.org/10.1039/C7GC00195A
https://doi.org/10.1039/C7GC00195A
https://doi.org/10.1039/C7GC00195A
https://doi.org/10.1039/C7EE01298E
https://doi.org/10.1039/C7EE01298E
https://doi.org/10.1039/C7EE01298E
https://doi.org/10.1021/acssuschemeng.8b01256
https://doi.org/10.1021/acssuschemeng.8b01256
https://doi.org/10.1021/acssuschemeng.8b01256
https://doi.org/10.1016/j.joule.2018.03.012
https://doi.org/10.1016/j.joule.2018.03.012
https://doi.org/10.1016/j.joule.2018.03.012
https://doi.org/10.1016/j.joule.2018.03.012
https://doi.org/10.1002/cssc.201600237
https://doi.org/10.1002/cssc.201600237
https://doi.org/10.1002/cssc.201600237
http://www.chemsuschem.org


[13] H. Luo, I. M. Klein, Y. Jiang, H. Zhu, B. Liu, H. I. Kentt-maa, M. M. Abu-
Omar, ACS Sustainable Chem. Eng. 2016, 4, 2316 – 2322.

[14] X. Ouyang, X. Huang, J. Zhu, M. D. Boot, E. J. M. Hensen, ACS Sustainable
Chem. Eng. 2019, 7, 13764 – 13773.

[15] S. Rautiainen, D. Di Francesco, S. N. Katea, G. Westin, D. N. Tungasmita,
J. S. M. Samec, ChemSusChem 2019, 12, 404 – 408.

[16] T. Renders, G. Van den Bossche, T. Vangeel, K. Van Aelst, B. Sels, Curr.
Opin. Biotechnol. 2019, 56, 193 – 201.

[17] Z. Sun, G. Bottari, A. Afanasenko, M. C. A. Stuart, P. J. Deuss, B. Fridrich,
K. Barta, Nat. Catal. 2018, 1, 82 – 92.

[18] T. Vangeel, T. Renders, K. Van Aelst, E. Cooreman, S. Van Den Bosch, G.
Van Den Bossche, S. F. Koelewijn, C. M. Courtin, B. F. Sels, Green Chem.
2019, 21, 5841 – 5851.

[19] K. Zhang, H. Li, L. P. Xiao, B. Wang, R. C. Sun, G. Song, Bioresour. Technol.
2019, 285, 121335.

[20] P. J. Deuss, M. Scott, F. Tran, N. J. Westwood, J. G. De Vries, K. Barta, J.
Am. Chem. Soc. 2015, 137, 7456 – 7467.

[21] P. J. Deuss, C. W. Lahive, C. S. Lancefield, N. J. Westwood, P. C. J. Kamer,
K. Barta, J. G. de Vries, ChemSusChem 2016, 9, 2974 – 2981.

[22] C. W. Lahive, P. J. Deuss, C. S. Lancefield, Z. Sun, D. B. Cordes, C. M.
Young, F. Tran, A. M. Z. Slawin, J. G. De Vries, P. C. J. Kamer, N. J. West-
wood, K. Barta, J. Am. Chem. Soc. 2016, 138, 8900 – 8911.

[23] M. Kogo, R. Sakai, K. Saito, T. Watanabe, A. Kaiho, Green Chem. 2015, 17,
2780 – 2783.

[24] A. Kaiho, D. Mazzarella, M. Satake, M. Kogo, R. Sakai, T. Watanabe, Green
Chem. 2016, 18, 6526 – 6535.

[25] X. Huang, X. Ouyang, B. M. S. Hendriks, O. M. M. Gonzalez, J. Zhu, T. I.
Kor#nyi, M. D. Boot, E. J. M. Hensen, Faraday Discuss. 2017, 202, 141 –
156.

[26] C. M. Alder, J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E.
Shuster, H. F. Sneddon, Green Chem. 2016, 18, 3879 – 3890.

[27] E. Jasiukaityte-Grojzdek, M. Kunaver, C. Crestini, J. Wood Chem. Technol.
2012, 32, 342 – 360.

[28] S. Kubo, T. Yamada, K. Hashida, H. Ono, Chem. Lett. 2007, 36, 502 – 503.
[29] P. R. Tundo, M. Musolino, F. Arico’, Front. Chem. 2019, 7, 300.
[30] M. Selva, A. Perosa, D. Rodr&guez-Padrjn, R. Luque, ACS Sustainable

Chem. Eng. 2019, 7, 6471 – 6479.
[31] B. Sch-ffner, F. Schaffner, S. P. Verevkin, A. Bçrner, Chem. Rev. 2010, 110,

4554 – 4581.
[32] Z. Zhang, I. M. O’Hara, D. W. Rackemann, W. O. S. Doherty, Green Chem.

2013, 15, 255 – 264.
[33] Z. Zhang, D. W. Rackemann, W. O. S. Doherty, I. M. O’Hara, Biotechnol.

Biofuels 2013, 6, 153.
[34] Q. Wang, K. Chen, J. Li, G. Yang, S. Liu, J. Xu, BioResources 2011, 6,

3034 – 3043.
[35] M. A. Mellmer, C. Sener, J. M. R. Gallo, J. S. Luterbacher, D. M. Alonso,

J. A. Dumesic, Angew. Chem. Int. Ed. 2014, 53, 11872 – 11875; Angew.
Chem. 2014, 126, 12066 – 12069.

[36] Y. Ni, Q. Hu, J. Appl. Polym. Sci. 1995, 57, 1441 – 1446.

[37] J. Quesada-Medina, F. J. Ljpez-Cremades, P. Olivares-Carrillo, Bioresour.
Technol. 2010, 101, 8252 – 8260.

[38] J. H. Hildebrand, R. L. Scott, The Solubility of Nonelectrolytes, Reinhold
Pub. Corp. , New York, 1950.

[39] Physical Properties of Polymers Handbook (Ed. : J. E. Mark), Springer, New
York, 2007.

[40] N. Giummarella, C. Lindgren, M. E. Lindstrçm, G. Henriksson, BioResour-
ces 2016, 11, 3494 – 3510.

[41] A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohe-
sion Parameters, Routledge, 2017, p. 55.

[42] A. F. M. Barton, Handbook of Poylmer-Liquid Interaction Parameters and
Solubility Parameters, Routledge, 2018, p. 572.

[43] H. Q. LÞ, A. Zaitseva, J.-P. Pokki, M. St,hl, V. Alopaeus, H. Sixta, ChemSus-
Chem 2016, 9, 2939 – 2947.

[44] R. L. Feller, N. Stolow, E. H. Jones, On Picture Varnishes and Their Sol-
vents, Press Of Case Western Reserve University, Cleveland, 1971.

[45] M. A. Mellmer, C. Sanpitakseree, B. Demir, P. Bai, K. Ma, M. Neurock, J. A.
Dumesic, Nat. Catal. 2018, 1, 199 – 207.

[46] T. Yamada, H. Ono, Bioresour. Technol. 1999, 70, 61 – 67.
[47] K. Zhang, Z. Pei, D. Wang, Bioresour. Technol. 2016, 199, 21 – 33.
[48] M. V. Galkin, A. T. Smit, E. Subbotina, K. A. Artemenko, J. Bergquist,

W. J. J. Huijgen, J. S. M. Samec, ChemSusChem 2016, 9, 3280 – 3287.
[49] M. V. Galkin, J. S. M. Samec, ChemSusChem 2014, 7, 2154 – 2158.
[50] K. M. Torr, D. J. van de Pas, E. Cazeils, I. D. Suckling, Bioresour. Technol.

2011, 102, 7608 – 7611.
[51] F. Lu, J. Ralph, J. Agric. Food Chem. 1997, 45, 4655 – 4660.
[52] D. M. Miles-Barrett, A. R. Neal, C. Hand, J. R. D. Montgomery, I. Panovic,

O. S. Ojo, C. S. Lancefield, D. B. Cordes, A. M. Z. Slawin, T. Lebl, N. J.
Westwood, Org. Biomol. Chem. 2016, 14, 10023 – 10030.

[53] I. Panovic, C. S. Lancefield, D. Phillips, M. J. Gronnow, N. J. Westwood,
ChemSusChem 2019, 12, 542 – 548.

[54] A. Smit, W. Huijgen, Green Chem. 2017, 19, 5505 – 5514.
[55] S. Jin, A. J. Hunt, J. H. Clark, C. R. McElroy, Green Chem. 2016, 18, 5839 –

5844.
[56] W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, P. Chen, Cellulose 2011, 18, 433 –

442.
[57] H. Yang, X. Zhang, H. Luo, B. Liu, T. M. Shiga, X. Li, J. I. Kim, P. Rubinelli,

J. C. Overton, V. Subramanyam, B. R. Cooper, H. Mo, M. M. Abu-Omar, C.
Chapple, B. S. Donohoe, L. Makowski, N. S. Mosier, M. C. McCann, N. C.
Carpita, R. Meilan, Biotechnol. Biofuels 2019, 12, 171.

[58] W. Lan, M. T. Amiri, C. M. Hunston, J. S. Luterbacher, Angew. Chem. Int.
Ed. 2018, 57, 1356 – 1360; Angew. Chem. 2018, 130, 1370 – 1374.

[59] P. V. Balaji, S. Chandrasekaran, Eur. J. Org. Chem. 2016, 2547 – 2554.

Manuscript received: December 23, 2019

Accepted manuscript online: February 26, 2020
Version of record online: March 31, 2020

ChemSusChem 2020, 13, 4468 – 4477 www.chemsuschem.org T 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim4477

ChemSusChem
Full Papers
doi.org/10.1002/cssc.201903526

https://doi.org/10.1021/acssuschemeng.5b01776
https://doi.org/10.1021/acssuschemeng.5b01776
https://doi.org/10.1021/acssuschemeng.5b01776
https://doi.org/10.1021/acssuschemeng.9b01497
https://doi.org/10.1021/acssuschemeng.9b01497
https://doi.org/10.1021/acssuschemeng.9b01497
https://doi.org/10.1021/acssuschemeng.9b01497
https://doi.org/10.1002/cssc.201802497
https://doi.org/10.1002/cssc.201802497
https://doi.org/10.1002/cssc.201802497
https://doi.org/10.1016/j.copbio.2018.12.005
https://doi.org/10.1016/j.copbio.2018.12.005
https://doi.org/10.1016/j.copbio.2018.12.005
https://doi.org/10.1016/j.copbio.2018.12.005
https://doi.org/10.1038/s41929-017-0007-z
https://doi.org/10.1038/s41929-017-0007-z
https://doi.org/10.1038/s41929-017-0007-z
https://doi.org/10.1039/C9GC02139F
https://doi.org/10.1039/C9GC02139F
https://doi.org/10.1039/C9GC02139F
https://doi.org/10.1039/C9GC02139F
https://doi.org/10.1016/j.biortech.2019.121335
https://doi.org/10.1016/j.biortech.2019.121335
https://doi.org/10.1021/jacs.5b03693
https://doi.org/10.1021/jacs.5b03693
https://doi.org/10.1021/jacs.5b03693
https://doi.org/10.1021/jacs.5b03693
https://doi.org/10.1002/cssc.201600831
https://doi.org/10.1002/cssc.201600831
https://doi.org/10.1002/cssc.201600831
https://doi.org/10.1021/jacs.6b04144
https://doi.org/10.1021/jacs.6b04144
https://doi.org/10.1021/jacs.6b04144
https://doi.org/10.1039/C6GC02211A
https://doi.org/10.1039/C6GC02211A
https://doi.org/10.1039/C6GC02211A
https://doi.org/10.1039/C6GC02211A
https://doi.org/10.1039/C7FD00039A
https://doi.org/10.1039/C7FD00039A
https://doi.org/10.1039/C7FD00039A
https://doi.org/10.1039/C6GC00611F
https://doi.org/10.1039/C6GC00611F
https://doi.org/10.1039/C6GC00611F
https://doi.org/10.1246/cl.2007.502
https://doi.org/10.1246/cl.2007.502
https://doi.org/10.1246/cl.2007.502
https://doi.org/10.1021/acssuschemeng.9b00464
https://doi.org/10.1021/acssuschemeng.9b00464
https://doi.org/10.1021/acssuschemeng.9b00464
https://doi.org/10.1021/acssuschemeng.9b00464
https://doi.org/10.1039/C2GC36323B
https://doi.org/10.1039/C2GC36323B
https://doi.org/10.1039/C2GC36323B
https://doi.org/10.1039/C2GC36323B
https://doi.org/10.1186/1754-6834-6-153
https://doi.org/10.1186/1754-6834-6-153
https://doi.org/10.1186/1754-6834-6-153
https://doi.org/10.1002/anie.201408359
https://doi.org/10.1002/anie.201408359
https://doi.org/10.1002/anie.201408359
https://doi.org/10.1002/ange.201408359
https://doi.org/10.1002/ange.201408359
https://doi.org/10.1002/ange.201408359
https://doi.org/10.1002/ange.201408359
https://doi.org/10.1002/app.1995.070571203
https://doi.org/10.1002/app.1995.070571203
https://doi.org/10.1002/app.1995.070571203
https://doi.org/10.1016/j.biortech.2010.06.011
https://doi.org/10.1016/j.biortech.2010.06.011
https://doi.org/10.1016/j.biortech.2010.06.011
https://doi.org/10.1016/j.biortech.2010.06.011
https://doi.org/10.1038/s41929-018-0027-3
https://doi.org/10.1038/s41929-018-0027-3
https://doi.org/10.1038/s41929-018-0027-3
https://doi.org/10.1016/S0960-8524(99)00008-5
https://doi.org/10.1016/S0960-8524(99)00008-5
https://doi.org/10.1016/S0960-8524(99)00008-5
https://doi.org/10.1016/j.biortech.2015.08.102
https://doi.org/10.1016/j.biortech.2015.08.102
https://doi.org/10.1016/j.biortech.2015.08.102
https://doi.org/10.1002/cssc.201600648
https://doi.org/10.1002/cssc.201600648
https://doi.org/10.1002/cssc.201600648
https://doi.org/10.1002/cssc.201402017
https://doi.org/10.1002/cssc.201402017
https://doi.org/10.1002/cssc.201402017
https://doi.org/10.1016/j.biortech.2011.05.040
https://doi.org/10.1016/j.biortech.2011.05.040
https://doi.org/10.1016/j.biortech.2011.05.040
https://doi.org/10.1016/j.biortech.2011.05.040
https://doi.org/10.1021/jf970539p
https://doi.org/10.1021/jf970539p
https://doi.org/10.1021/jf970539p
https://doi.org/10.1039/C6OB01915C
https://doi.org/10.1039/C6OB01915C
https://doi.org/10.1039/C6OB01915C
https://doi.org/10.1039/C7GC02379K
https://doi.org/10.1039/C7GC02379K
https://doi.org/10.1039/C7GC02379K
https://doi.org/10.1039/C6GC01826B
https://doi.org/10.1039/C6GC01826B
https://doi.org/10.1039/C6GC01826B
https://doi.org/10.1007/s10570-011-9497-z
https://doi.org/10.1007/s10570-011-9497-z
https://doi.org/10.1007/s10570-011-9497-z
https://doi.org/10.1002/anie.201710838
https://doi.org/10.1002/anie.201710838
https://doi.org/10.1002/anie.201710838
https://doi.org/10.1002/anie.201710838
https://doi.org/10.1002/ange.201710838
https://doi.org/10.1002/ange.201710838
https://doi.org/10.1002/ange.201710838
https://doi.org/10.1002/ejoc.201600203
https://doi.org/10.1002/ejoc.201600203
https://doi.org/10.1002/ejoc.201600203
http://www.chemsuschem.org

