355 research outputs found
Memory Based Online Learning of Deep Representations from Video Streams
We present a novel online unsupervised method for face identity learning from
video streams. The method exploits deep face descriptors together with a memory
based learning mechanism that takes advantage of the temporal coherence of
visual data. Specifically, we introduce a discriminative feature matching
solution based on Reverse Nearest Neighbour and a feature forgetting strategy
that detect redundant features and discard them appropriately while time
progresses. It is shown that the proposed learning procedure is asymptotically
stable and can be effectively used in relevant applications like multiple face
identification and tracking from unconstrained video streams. Experimental
results show that the proposed method achieves comparable results in the task
of multiple face tracking and better performance in face identification with
offline approaches exploiting future information. Code will be publicly
available.Comment: arXiv admin note: text overlap with arXiv:1708.0361
Context-Aware Trajectory Prediction
Human motion and behaviour in crowded spaces is influenced by several
factors, such as the dynamics of other moving agents in the scene, as well as
the static elements that might be perceived as points of attraction or
obstacles. In this work, we present a new model for human trajectory prediction
which is able to take advantage of both human-human and human-space
interactions. The future trajectory of humans, are generated by observing their
past positions and interactions with the surroundings. To this end, we propose
a "context-aware" recurrent neural network LSTM model, which can learn and
predict human motion in crowded spaces such as a sidewalk, a museum or a
shopping mall. We evaluate our model on a public pedestrian datasets, and we
contribute a new challenging dataset that collects videos of humans that
navigate in a (real) crowded space such as a big museum. Results show that our
approach can predict human trajectories better when compared to previous
state-of-the-art forecasting models.Comment: Submitted to BMVC 201
Wide-address spaces - exploring the design space
In a recent issue of Operating System Review, Hayter and McAuley [1991] argue that future high-performance systems trade a traditional, bus-based organization for one where all components are linked together by network switches (the Desk-Area Network). In this issue of Operating System Review, Leslie, McAuley and Mullender conclude that DAN-based architectures allow the exploitation of shared memory on a wider scale than just a single (multi)processor. In this paper, we will explore how emerging 64-bit processors can be used to implement shared address spaces spanning multiple machines
A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications
The development of new scaffolds and materials for tissue engineering is a wide and open realm of material science. Among solutions, the use of biopolymers represents a particularly interesting area of study due to their great chemical complexity that enables creation of specific molecular architectures. However, biopolymers do not exhibit the properties required for direct application in tissue repair—such as mechanical and electrical properties—but they do show very attractive chemical functionalities which are difficult to produce through in vitro synthesis. The combination of biopolymers with nanostructured carbon fillers could represent a robust solution to enhance composite properties, producing composites with new and unique features, particularly relating to electronic conduction. In this paper, we provide a review of the field of carbonaceous nanostructure-containing biopolymer composites, limiting our investigation to tissue-engineering applications, and providing a complete overview of the recent and most outstanding achievements
A Short Review on Biomedical Applications of Nanostructured Bismuth Oxide and Related Nanomaterials
In this review, we reported the main achievements reached by using bismuth oxides and related materials for biological applications. We overviewed the complex chemical behavior of bismuth during the transformation of its compounds to oxide and bismuth oxide phase transitions. Afterward, we summarized the more relevant studies regrouped into three categories based on the use of bismuth species: (i) active drugs, (ii) diagnostic and (iii) theragnostic. We hope to provide a complete overview of the great potential of bismuth oxides in biological environments
- …