671 research outputs found

    Sparse panicle1 is required for inflorescence development in Setaria viridis and maize.

    Get PDF
    Setaria viridis is a rapid-life-cycle model panicoid grass. To identify genes that may contribute to inflorescence architecture and thus have the potential to influence grain yield in related crops such as maize, we conducted an N-nitroso-N-methylurea (NMU) mutagenesis of S. viridis and screened for visible inflorescence mutant phenotypes. Of the approximately 2,700 M2 families screened, we identified four recessive sparse panicle mutants (spp1-spp4) characterized by reduced and uneven branching of the inflorescence. To identify the gene underlying the sparse panicle1 (spp1) phenotype, we performed bulked segregant analysis and deep sequencing to fine map it to an approximately 1 Mb interval. Within this interval, we identified disruptive mutations in two genes. Complementation tests between spp1 and spp3 revealed they were allelic, and deep sequencing of spp3 identified an independent disruptive mutation in SvAUX1 (AUXIN1), one of the two genes in the ∼1 Mb interval and the only gene disruption shared between spp1 and spp3. SvAUX1 was found to affect both inflorescence development and root gravitropism in S. viridis. A search for orthologous mutant alleles in maize confirmed a very similar role of ZmAUX1 in maize, which highlights the utility of S. viridis in accelerating functional genomic studies in maize

    Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity

    Get PDF
    Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective α1 homomeric glycine receptor (α1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1′E GlyR) was sufficient to convert the channels to select cations over anions with PCl/PNa = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2′Δ mutant GlyR retained its anion selectivity (PCl/PNa = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (PCl/PNa = 27.9). When the A-1′E and the P-2′Δ mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (PCl/PNa = 0.13). The SDM GlyR was also Ca2+ permeable (PCa/PNa = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19′A GlyR) produced a more Ca2+-permeable channel (PCa/PNa = 0.73), without drastically altering monovalent charge selectivity (PCl/PNa = 0.23). The SDM+R19′E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca2+ permeability (PCa/PNa = 0.92), with little effect on monovalent selectivity (PCl/PNa = 0.19). Estimates of the minimum pore diameter of the A-1′E, SDM, SDM+R19′A, and SDM+R19′E GlyRs revealed that these pores are larger than the α1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity

    Cellular imaging of zif268 Expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories

    Get PDF
    The neuroanatomical and molecular basis of fear memory retrieval was studied by analyzing the expression of the plasticity-associated immediate early gene zif268. Cellular quantitative in situ hybridization revealed that zif268 is expressed within specific regions of the hippocampus and amygdala during fear memory retrieval. Within the hippocampus, increased expression of zif268 was observed within CA1 neurons, but not dentate gyrus neurons, during the retrieval of contextual, but not cued, fear associations. In contrast, zif268 expression was increased within neurons of the amygdala (lateral, basal, and central nuclei) during the retrieval of both contextual and cued fear memories. These results demonstrate activation of hippocampal CA1 neurons in contextual fear memory retrieval that was not merely a correlate of the behavioral expression of fear itself, because it was limited to the retrieval of contextual, and not cued, fear memories. Further studies revealed that the selective increase in hippocampal CA1 zif268 expression seen after contextual fear memory retrieval was limited to the retrieval of recent (24 hr) but not older (28 d) memories. These experiments represent the first demonstration that zif268 expression in specific neuronal populations is associated with memory retrieval and suggest that this gene may contribute to plasticity and reconsolidation accompanying the retrieval process

    A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein.

    Get PDF
    Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington's and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA (PtAN1) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization

    A Single P-loop Glutamate Point Mutation to either Lysine or Arginine Switches the Cation–Anion Selectivity of the CNGA2 Channel

    Get PDF
    Cyclic nucleotide-gated (CNG) channels play a critical role in olfactory and visual transduction. Site-directed mutagenesis and inside-out patch-clamp recordings were used to investigate ion permeation and selectivity in two mutant homomeric rat olfactory CNGA2 channels expressed in HEK293 cells. A single point mutation of the negatively charged pore loop (P-loop) glutamate (E342) to either a positively charged lysine or arginine resulted in functional channels, which consistently responded to cGMP, although the currents were generally extremely small. The concentration–response curve of the lysine mutant channel was very similar to that of wild-type (WT) channels, suggesting no major structural alteration to the mutant channels. Reversal potential measurements, during cytoplasmic NaCl dilutions, showed that the lysine and the arginine mutations switched the selectivity of the channel from cations (PCl/PNa = 0.07 [WT]) to anions (PCl/PNa = 14 [Lys] or 10 [Arg]). Relative anion permeability sequences for the two mutant channels, measured with bi-ionic substitutions, were NO3− > I− > Br− > Cl− > F− > acetate−, the same as those obtained for anion-selective GABA and glycine channels. The mutant channels also seem to have an extremely small single-channel conductance, measured using noise analysis of about 1–2 pS, compared to a WT value of about 29 pS. The results showed that it is predominantly the charge of the E342 residue in the P-loop, rather than the pore helix dipoles, which controls the cation–anion selectivity of this channel. However, the outward rectification displayed by both mutant channels in symmetrical NaCl solutions suggests that the negative ends of the pore helix dipoles may play a role in reducing the outward movement of Cl− ions through these anion-selective channels. These results have potential implications for the determinants of anion–cation selectivity in the large family of P-loop–containing channels
    corecore