18 research outputs found

    The Truth Comes From Us: Supporting Workers with Developmental Disabilities

    Get PDF
    Employment professionals play a powerful role in the pursuit of true inclusion. This paper by self-advocates outlines key steps on how allies can move people with developmental disabilities out of poverty and into the heart of our communities

    The Truth Comes From Us: Supporting Workers with Developmental Disabilities

    No full text
    Employment professionals play a powerful role in the pursuit of true inclusion. This paper by self-advocates outlines key steps on how allies can move people with developmental disabilities out of poverty and into the heart of our communities

    Effect of the DASH diet on the sodium-chloride cotransporter and aquaporin-2 in urinary extracellular vesicles

    No full text
    The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW &amp; NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.</p

    Effect of the DASH diet on the sodium-chloride cotransporter and aquaporin-2 in urinary extracellular vesicles

    No full text
    The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW &amp; NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.</p

    Lactate increases hepatic secretion of VLDL-triglycerides in humans

    Get PDF
    <p>Objective: The pathophysiology of hypertriglyceridemia is complex hampering effective therapeutic strategies. Increased central parasympathetic nerve activity was shown to inhibit hepatic triglyceride (TG) excretion via modulation of liver stearyl-CoA desaturase (SCD)-1 activity in rodents. We evaluated the impact of 7-h lactate clamping on VLDL-TG homeostasis in humans.</p><p>Methods: Eight normolipidemic, male subjects were subjected to a continuous infusion of L-lactate (target concentration 3 mmol/L) or saline for 7 h in random order on two separate occasions. TG kinetics in very low density lipoproteins (VLDL1 and 2) were measured after a bolus injection of [1,1,2,3,3]-H-2(5)-glycerol. Palmitic acid (16: 0) and palmitoleic acid (16: 1) in VLDL1 and VLDL2 were measured as a reflection of liver SCD1 activity.</p><p>Results: Plasma TG levels changed by 0.16 +/- 0.09 mmol/L during lactate vs -0.15 +/- 0.08 mmol/L during saline (P <0.05). VLDL1 16:1/16:0 ratio increased to 1.2 +/- 0.7 during lactate versus a decrease during saline by -1.5 +/- 0.6 (p = 0.01). During lactate VLDL1-TG excretion was higher compared to saline (1604 [827-2870] versus 1285 [505-2155] mmol glycerol; p <0.05), trending toward higher VLDL1-TG pool sizes during lactate (28%; p = 0.07 versus saline).</p><p>Conclusions: In normolipidemic men, 7-h L-lactate clamp increases, rather than decreases SCD1 activity and hepatic TG secretion leading to elevated plasma TG levels. These conflicting data between human and rodents on central regulation of hepatic TG excretion illustrate that experimental findings on the role of the central nervous system in lipid metabolism should be interpreted with caution. (C) 2013 Elsevier Ireland Ltd. All rights reserved.</p>
    corecore