18,477 research outputs found
Asymptotics of Relativistic Spin Networks
The stationary phase technique is used to calculate asymptotic formulae for
SO(4) Relativistic Spin Networks. For the tetrahedral spin network this gives
the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j symbol. For
the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical
calculations of the Spin Network evaluation. Finally we discuss the asymptotics
of the SO(3,1) 10j-symbol.Comment: 31 pages, latex. v3: minor clarification
Semiclassical Limits of Extended Racah Coefficients
We explore the geometry and asymptotics of extended Racah coeffecients. The
extension is shown to have a simple relationship to the Racah coefficients for
the positive discrete unitary representation series of SU(1,1) which is
explicitly defined. Moreover, it is found that this extension may be
geometrically identified with two types of Lorentzian tetrahedra for which all
the faces are timelike.
The asymptotic formulae derived for the extension are found to have a similar
form to the standard Ponzano-Regge asymptotic formulae for the SU(2) 6j symbol
and so should be viable for use in a state sum for three dimensional Lorentzian
quantum gravity.Comment: Latex2e - 26 pages, 6 figures. Uses AMS-fonts, AMS-LaTeX, epsf.tex
and texdraw. Revised version with improved clarity and additional result
Feynman diagams coupled to three-dimensional quantum gravity
A framework for quantum field theory coupled to three-dimensional quantum
gravity is proposed. The coupling with quantum gravity regulates the Feynman
diagrams. One recovers the usual Feynman amplitudes in the limit as the
cosmological constant tends to zero.Comment: 7 pages. v2: minor corrections, added re
Electric field formulation for thin film magnetization problems
We derive a variational formulation for thin film magnetization problems in
type-II superconductors written in terms of two variables, the electric field
and the magnetization function. A numerical method, based on this formulation,
makes it possible to accurately compute all variables of interest, including
the electric field, for any value of the power in the power law current-voltage
relation characterizing the superconducting material. For high power values we
obtain a good approximation to the critical state model solution. Numerical
simulation results are presented for simply and multiply connected films, and
also for an inhomogeneous film.Comment: 15 p., submitte
On the causal Barrett--Crane model: measure, coupling constant, Wick rotation, symmetries and observables
We discuss various features and details of two versions of the Barrett-Crane
spin foam model of quantum gravity, first of the Spin(4)-symmetric Riemannian
model and second of the SL(2,C)-symmetric Lorentzian version in which all
tetrahedra are space-like. Recently, Livine and Oriti proposed to introduce a
causal structure into the Lorentzian Barrett--Crane model from which one can
construct a path integral that corresponds to the causal (Feynman) propagator.
We show how to obtain convergent integrals for the 10j-symbols and how a
dimensionless constant can be introduced into the model. We propose a `Wick
rotation' which turns the rapidly oscillating complex amplitudes of the Feynman
path integral into positive real and bounded weights. This construction does
not yet have the status of a theorem, but it can be used as an alternative
definition of the propagator and makes the causal model accessible by standard
numerical simulation algorithms. In addition, we identify the local symmetries
of the models and show how their four-simplex amplitudes can be re-expressed in
terms of the ordinary relativistic 10j-symbols. Finally, motivated by possible
numerical simulations, we express the matrix elements that are defined by the
model, in terms of the continuous connection variables and determine the most
general observable in the connection picture. Everything is done on a fixed
two-complex.Comment: 22 pages, LaTeX 2e, 1 figur
An algebraic interpretation of the Wheeler-DeWitt equation
We make a direct connection between the construction of three dimensional
topological state sums from tensor categories and three dimensional quantum
gravity by noting that the discrete version of the Wheeler-DeWitt equation is
exactly the pentagon for the associator of the tensor category, the
Biedenharn-Elliott identity. A crucial role is played by an asymptotic formula
relating 6j-symbols to rotation matrices given by Edmonds.Comment: 10 pages, amstex, uses epsf.tex. New version has improved
presentatio
Asymptotics of 10j symbols
The Riemannian 10j symbols are spin networks that assign an amplitude to each
4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This
amplitude is a function of the areas of the 10 faces of the 4-simplex, and
Barrett and Williams have shown that one contribution to its asymptotics comes
from the Regge action for all non-degenerate 4-simplices with the specified
face areas. However, we show numerically that the dominant contribution comes
from degenerate 4-simplices. As a consequence, one can compute the asymptotics
of the Riemannian 10j symbols by evaluating a `degenerate spin network', where
the rotation group SO(4) is replaced by the Euclidean group of isometries of
R^3. We conjecture formulas for the asymptotics of a large class of Riemannian
and Lorentzian spin networks in terms of these degenerate spin networks, and
check these formulas in some special cases. Among other things, this conjecture
implies that the Lorentzian 10j symbols are asymptotic to 1/16 times the
Riemannian ones.Comment: 25 pages LaTeX with 8 encapsulated Postscript figures. v2 has various
clarifications and better page breaks. v3 is the final version, to appear in
Classical and Quantum Gravity, and has a few minor corrections and additional
reference
Finiteness and Dual Variables for Lorentzian Spin Foam Models
We describe here some new results concerning the Lorentzian Barrett-Crane
model, a well-known spin foam formulation of quantum gravity. Generalizing an
existing finiteness result, we provide a concise proof of finiteness of the
partition function associated to all non-degenerate triangulations of
4-manifolds and for a class of degenerate triangulations not previously shown.
This is accomplished by a suitable re-factoring and re-ordering of integration,
through which a large set of variables can be eliminated. The resulting
formulation can be interpreted as a ``dual variables'' model that uses
hyperboloid variables associated to spin foam edges in place of representation
variables associated to faces. We outline how this method may also be useful
for numerical computations, which have so far proven to be very challenging for
Lorentzian spin foam models.Comment: 15 pages, 1 figur
Generalised group field theories and quantum gravity transition amplitudes
We construct a generalised formalism for group field theories, in which the
domain of the field is extended to include additional proper time variables, as
well as their conjugate mass variables. This formalism allows for different
types of quantum gravity transition amplitudes in perturbative expansion, and
we show how both causal spin foam models and the usual a-causal ones can be
derived from it, within a sum over triangulations of all topologies. We also
highlight the relation of the so-derived causal transition amplitudes with
simplicial gravity actions.Comment: RevTeX; 6 pages, 2 figure
- …