4,648 research outputs found
Inclusive neutrino scattering off deuteron at low energies in chiral effective field theory
Cross sections for inclusive neutrino scattering off deuteron induced by
neutral and charge-changing weak currents are calculated from threshold up to
150 MeV energies in a chiral effective field theory including high orders in
the power counting. Contributions beyond leading order (LO) in the weak current
are found to be small, and increase the cross sections obtained with the LO
transition operators by a couple of percent over the whole energy range
(0--150) MeV. The cutoff dependence is negligible, and the predicted cross
sections are within \% of, albeit consistently larger than,
corresponding predictions obtained in conventional meson-exchange frameworks.Comment: 16 pages, 10 figures, edits made to the text and added two figures,
as suggested by Referee. References adde
Noise-driven Synchronization in Coupled Map Lattices
Synchronization is shown to occur in spatially extended systems under the
effect of additive spatio-temporal noise. In analogy to low dimensional
systems, synchronized states are observable only if the maximum Lyapunov
exponent is negative. However, a sufficiently high noise level can
lead, in map with finite domain of definition, to nonlinear propagation of
information, even in non chaotic systems. In this latter case the transition to
synchronization is ruled by a new ingredient : the propagation velocity of
information . As a general statement, we can affirm that if is
finite the time needed to achieve a synchronized trajectory grows exponentially
with the system size , while it increases logarithmically with when, for
sufficiently large noise amplitude, .Comment: 11 pages, Latex - 6 EPS Figs - Proceeding LSD 98 (Marseille
On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces
The adsorption of atomic oxygen and its inclusion into subsurface sites on
Ag(210) and Ag(410) surfaces have been investigated using density functional
theory. We find that--in the absence of adatoms on the first metal
layer--subsurface adsorption results in strong lattice distortion which makes
it energetically unfavoured. However subsurface sites are significantly
stabilised when a sufficient amount of O adatoms is present on the surface. At
high enough O coverage on the Ag(210) surface the mixed on-surface + subsurface
O adsorption is energetically favoured with respect to the on-surface only
adsorption. Instead, on the Ag(410) surface, at the coverage we have considered
(3/8 ML), the existence of stable terrace sites makes the subsurface O
incorporation less favourable. These findings are compatible with the results
of recent HREEL experiments which have actually motivated this work.Comment: 8 pages, 4 figures and 1 tabl
Two-spin entanglement distribution near factorized states
We study the two-spin entanglement distribution along the infinite
chain described by the XY model in a transverse field; closed analytical
expressions are derived for the one-tangle and the concurrences ,
being the distance between the two possibly entangled spins, for values of the
Hamiltonian parameters close to those corresponding to factorized ground
states. The total amount of entanglement, the fraction of such entanglement
which is stored in pairwise entanglement, and the way such fraction distributes
along the chain is discussed, with attention focused on the dependence on the
anisotropy of the exchange interaction. Near factorization a characteristic
length-scale naturally emerges in the system, which is specifically related
with entanglement properties and diverges at the critical point of the fully
isotropic model. In general, we find that anisotropy rule a complex behavior of
the entanglement properties, which results in the fact that more isotropic
models, despite being characterized by a larger amount of total entanglement,
present a smaller fraction of pairwise entanglement: the latter, in turn, is
more evenly distributed along the chain, to the extent that, in the fully
isotropic model at the critical field, the concurrences do not depend on .Comment: 14 pages, 6 figures. Final versio
Tritium -decay in chiral effective field theory
We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium
-decay by including in the charge-changing weak current the corrections
up to one loop recently derived in nuclear chiral effective field theory
( EFT). The trinucleon wave functions are obtained from
hyperspherical-harmonics solutions of the Schrodinger equation with two- and
three-nucleon potentials corresponding to either EFT (the N3LO/N2LO
combination) or meson-exchange phenomenology (the AV18/UIX combination). We
find that contributions due to loop corrections in the axial current are, in
relative terms, as large as (and in some cases, dominate) those from one-pion
exchange, which nominally occur at lower order in the power counting. We also
provide values for the low-energy constants multiplying the contact axial
current and three-nucleon potential, required to reproduce the experimental GT
matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX
calculations.Comment: 19 pages,6 figures, corrections to Text as suggested by Referee
added; Erratum: 4 pages, 3 figures, corrections to Eq.(20), Tables I, II,
III, Figures 4, 5, conclusions unchange
A chiral effective field theory study of hadronic parity violation in few-nucleon systems
We reconsider the derivation of the nucleon-nucleon parity-violating (PV)
potential within a chiral effective field theory framework. We construct the
potential up to next-to-next-to-leading order by including one-pion-exchange,
two-pion-exchange, contact, and 1/M (M being the nucleon mass) terms, and use
dimensional regularization to renormalize the pion-loop corrections. A detailed
analysis of the number of independent low-energy constants (LEC's) entering the
potential is carried out. We find that it depends on six LEC's: the
pion-nucleon PV coupling constant and five parameters multiplying
contact interactions. We investigate PV effects induced by this potential on
several few-nucleon observables, including the - longitudinal
asymmetry, the neutron spin rotation in - and -
scattering, and the longitudinal asymmetry in the HeH
charge-exchange reaction. An estimate for the range of values of the various
LEC's is provided by using available experimental data.Comment: 31 pages, 7 figures, submitted to Physical Review
Socialisations langagières, tension identitaires et investissement
This study aims to explore the relationships that can be established between identity tensions affecting a learner of French in an alloglotte context, its investment in the appropriation of the language and the contacts that can be established with the target language, the latter constituting a necessary mediation for a successful appropria
tion. The empirical analysis is based on data concerning an Austrian living in French-speaking Switzerland and taking courses in an academic context
Finite-volume matrix elements of two-body states
In this talk, we present a framework for studying structural information of
resonances and bound states coupling to two-hadron scattering states. This
makes use of a recently proposed finite-volume formalism to determine a class
of observables that are experimentally inaccessible but can be accessed via
lattice QCD. In particular, we shown that finite-volume two-body matrix
elements with one current insertion can be directly related to scattering
amplitudes coupling to the external current. For two-hadron systems with
resonances or bound states, one can extract the corresponding form factors of
these from the energy-dependence of the amplitudes.Comment: 7 pages, 2 figures, Proceedings of Lattice 201
Inclusive Neutrino Scattering Off the Deuteron at Low Energies in Chiral Effective Field Theory
Cross sections for inclusive neutrino scattering off the deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. Contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range 0–150 MeV. The cutoff dependence is negligible, and the predicted cross sections are within ∼2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchange frameworks
Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures
Quadratic-response theory is shown to provide a conceptually simple but
accurate approximation for the self-consistent one-electron potential of
semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs
and InGaAs/InP (001) superlattices using the local-density approximation to
density-functional theory and norm-conserving pseudopotentials without
spin-orbit coupling. When the reference crystal is chosen to be the
virtual-crystal average of the two bulk constituents, the absolute error in the
quadratic-response potential for Gamma(15) valence electrons is about 2 meV for
GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the
electron density and potential response are shown to be accurate throughout a
small neighborhood of each reciprocal lattice vector, thus providing a further
simplification that is confirmed to be valid for slowly varying envelope
functions. Although the linear response is about an order of magnitude larger
than the quadratic response, the quadratic terms are important both
quantitatively (if an accuracy of better than a few tens of meV is desired) and
qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor
- …