33,020 research outputs found
Analytically solvable driven time-dependent two-level quantum systems
Analytical solutions to the time-dependent Schrodinger equation describing a
driven two-level system are invaluable to many areas of physics, but they are
also extremely rare. Here, we present a simple algorithm that generates an
unlimited number of exact analytical solutions. We show that a general
single-axis driving term and its corresponding evolution operator are
determined by a single real function which is constrained only by a certain
inequality and initial conditions. Any function satisfying these constraints
yields an exact analytical solution. We demonstrate this method by presenting
several new exact solutions to the time-dependent Schrodinger equation. Our
general method and many of the new solutions we present are particularly
relevant to qubit control in quantum computing applications.Comment: 4.5 pages, 4 figures, PRL versio
Photoionisation and Heating of a Supernova Driven, Turbulent, Interstellar Medium
The Diffuse Ionised Gas (DIG) in galaxies traces photoionisation feedback
from massive stars. Through three dimensional photoionisation simulations, we
study the propagation of ionising photons, photoionisation heating and the
resulting distribution of ionised and neutral gas within snapshots of
magnetohydrodynamic simulations of a supernova driven turbulent interstellar
medium. We also investigate the impact of non-photoionisation heating on
observed optical emission line ratios. Inclusion of a heating term which scales
less steeply with electron density than photoionisation is required to produce
diagnostic emission line ratios similar to those observed with the Wisconsin
H{\alpha} Mapper. Once such heating terms have been included, we are also able
to produce temperatures similar to those inferred from observations of the DIG,
with temperatures increasing to above 15000 K at heights |z| > 1 kpc. We find
that ionising photons travel through low density regions close to the midplane
of the simulations, while travelling through diffuse low density regions at
large heights. The majority of photons travel small distances (< 100pc);
however some travel kiloparsecs and ionise the DIG.Comment: 10 pages, 13 figures, accepted to MNRA
Bi-layer splitting in overdoped high cuprates
Recent angle-resolved photoemission data for overdoped Bi2212 are explained.
Of the peak-dip-hump structure, the peak corresponds the component
of a hole condensate which appears at . The fluctuating part of this same
condensate produces the hump. The bilayer splitting is large enough to produce
a bonding hole and an electron antibonding quasiparticle Fermi surface. Smaller
bilayer splittings observed in some experiments reflect the interaction of the
peak structure with quasiparticle states near, but not at, the Fermi surface.Comment: 4 pages with 2 figures - published versio
Intermittency and the passive nature of the magnitude of the magnetic field
It is shown that the statistical properties of the magnitude of the magnetic
field in turbulent electrically conducting media resemble, in the inertial
range, those of passive scalars in fully developed three-dimensional fluid
turbulence. This conclusion, suggested by the data from Advanced Composition
Explorer, is supported by a brief analysis of the appropriate
magnetohydrodynamic equations
Effective chiral-spin Hamiltonian for odd-numbered coupled Heisenberg chains
An system of odd number of coupled Heisenberg spin chains
is studied using a degenerate perturbation theory, where is the number of
coupled chains. An effective chain Hamiltonian is derived explicitly in terms
of two spin half degrees of freedom of a closed chain of sites, valid in
the regime the inter-chain coupling is stronger than the intra-chain coupling.
The spin gap has been calculated numerically using the effective Hamiltonian
for for a finite chain up to ten sites. It is suggested that the
ground state of the effective Hamiltonian is correlated, by examining
variational states for the effective chiral-spin chain Hamiltonian.Comment: 9 Pages, Latex, report ICTP-94-28
Distinguishing Among Strong Decay Models
Two competing models for strong hadronic decays, the and
models, are currently in use.
Attempts to rule out one or the other have been hindered by a poor
understanding of final state interactions and by ambiguities in the treatment
of relativistic effects.
In this article we study meson decays in both models, focussing on certain
amplitude ratios for which the relativistic uncertainties largely cancel out
(notably the ratios in and
), and using a Quark Born Formalism to estimate the
final state interactions.
We find that the model is strongly favoured.
In addition, we predict a amplitude ratio of for the decay
.
We also study the parameter-dependence of some individual amplitudes (as
opposed to amplitude ratios), in an attempt to identify a ``best'' version of
the model.Comment: 20 pages, uuencoded postscript file with 7 figures, MIT-CTP-2295;
CMU-HEP94-1
- …