1,246 research outputs found
Crossing Statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem
By introducing Crossing functions and hyper-parameters I show that the
Bayesian interpretation of the Crossing Statistics [1] can be used trivially
for the purpose of model selection among cosmological models. In this approach
to falsify a cosmological model there is no need to compare it with other
models or assume any particular form of parametrization for the cosmological
quantities like luminosity distance, Hubble parameter or equation of state of
dark energy. Instead, hyper-parameters of Crossing functions perform as
discriminators between correct and wrong models. Using this approach one can
falsify any assumed cosmological model without putting priors on the underlying
actual model of the universe and its parameters, hence the issue of dark energy
parametrization is resolved. It will be also shown that the sensitivity of the
method to the intrinsic dispersion of the data is small that is another
important characteristic of the method in testing cosmological models dealing
with data with high uncertainties.Comment: 14 pages, 4 figures, discussions extended, 1 figure and two
references added, main results unchanged, matches the final version to be
published in JCA
Detection of a variable interstellar absorption component towards ÎŽ Orionis A
Observations of ÎŽ Ori A made with the UHRF in its highest resolution mode (Râ900 000) have revealed the presence of a cool (Tkâ©œ350 K) variable absorption component at a heliocentric velocity of +21.3 km sâ1. The component is detected in Na I D1, where clear hyperfine splitting is seen, and Ca II K. Comparison of our data with existing spectra suggests that the component has consistently increased in strength from 1966 to 1994, and subsequently reduced in intensity by 1999. Following a discussion of the possible origins of this component it is concluded that an interstellar, rather than circumstellar, origin is most likely. This is one of very few detections of variable interstellar absorption reported in the literature, and we suggest an origin within filamentary material associated with the expanding H I shell surrounding the Orion-Eridanus superbubble
Remarks on the KLS conjecture and Hardy-type inequalities
We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary
functions on a convex body , not necessarily
vanishing on the boundary . This reduces the study of the
Neumann Poincar\'e constant on to that of the cone and Lebesgue
measures on ; these may be bounded via the curvature of
. A second reduction is obtained to the class of harmonic
functions on . We also study the relation between the Poincar\'e
constant of a log-concave measure and its associated K. Ball body
. In particular, we obtain a simple proof of a conjecture of
Kannan--Lov\'asz--Simonovits for unit-balls of , originally due to
Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in
final form in GAFA seminar note
An ultra-high-resolution study of the interstellar medium towards Orion
We report ultra-high-resolution observations graphic of Na I, Ca II, K I, CH and CH+ for interstellar sightlines towards 12 bright stars in Orion. These data enable the detection of many more absorption components than previously recognized, providing a more accurate perspective on the absorbing medium. This is especially so for the line of sight to the Orion nebula, a region not previously studied at very high resolution. Model fits have been constructed for the absorption-line profiles, providing estimates for the column density, velocity dispersion and central velocity for each constituent velocity component. A comparison between the absorption occurring in sightlines with small angular separations has been used, along with comparisons with other studies, to estimate the line-of-sight velocity structures. Comparisons with earlier studies have also revealed temporal variability in the absorption-line profile of ζ Ori, highlighting the presence of small-scale spatial structure in the interstellar medium on scales of â10 au. Where absorption from both Na0 and K0 is observed for a particular cloud, a comparison of the velocity dispersions measured for each of these species provides rigorous limits on both the kinetic temperature and turbulent velocity prevailing in each cloud. Our results indicate the turbulent motions to be subsonic in each case
Multiresolution analysis of active region magnetic structure and its correlation with the Mt. Wilson classification and flaring activity
Two different multi-resolution analyses are used to decompose the structure
of active region magnetic flux into concentrations of different size scales.
Lines separating these opposite polarity regions of flux at each size scale are
found. These lines are used as a mask on a map of the magnetic field gradient
to sample the local gradient between opposite polarity regions of given scale
sizes. It is shown that the maximum, average and standard deviation of the
magnetic flux gradient for alpha, beta, beta-gamma and beta-gamma-delta active
regions increase in the order listed, and that the order is maintained over all
length-scales. This study demonstrates that, on average, the Mt. Wilson
classification encodes the notion of activity over all length-scales in the
active region, and not just those length-scales at which the strongest flux
gradients are found. Further, it is also shown that the average gradients in
the field, and the average length-scale at which they occur, also increase in
the same order. Finally, there are significant differences in the gradient
distribution, between flaring and non-flaring active regions, which are
maintained over all length-scales. It is also shown that the average gradient
content of active regions that have large flares (GOES class 'M' and above) is
larger than that for active regions containing flares of all flare sizes; this
difference is also maintained at all length-scales.Comment: Accepted for publication in Solar Physic
The Crossing Statistic: Dealing with Unknown Errors in the Dispersion of Type Ia Supernovae
We propose a new statistic that has been designed to be used in situations
where the intrinsic dispersion of a data set is not well known: The Crossing
Statistic. This statistic is in general less sensitive than `chi^2' to the
intrinsic dispersion of the data, and hence allows us to make progress in
distinguishing between different models using goodness of fit to the data even
when the errors involved are poorly understood. The proposed statistic makes
use of the shape and trends of a model's predictions in a quantifiable manner.
It is applicable to a variety of circumstances, although we consider it to be
especially well suited to the task of distinguishing between different
cosmological models using type Ia supernovae. We show that this statistic can
easily distinguish between different models in cases where the `chi^2'
statistic fails. We also show that the last mode of the Crossing Statistic is
identical to `chi^2', so that it can be considered as a generalization of
`chi^2'.Comment: 14 pages, 5 figures. Paper restructured and extended and new
interpretation of the method presented. New results concerning model
selection. Treatment and error-analysis made fully model independent.
References added. Accepted for publication in JCA
Thermal treatment of nuclear fuel-containing Magnox sludge radioactive waste
Magnesium aluminosilicate and magnesium borosilicate glass formulations were developed and evaluated for the immobilisation of the radioactive waste known as Magnox sludge. Glass compositions were synthesised using two simplified bounding waste simulants, including corroded and metallic uranium and magnesium at waste loadings of up to 50 wt.%. The glasses immobilising corroded simulant waste formed heterogeneous and fully amorphous glasses, while those immobilising metallic wastes contained crystallites of UO2 and U3O8. Uranium speciation within the glass was investigated by micro-focus X-ray absorption near edge spectroscopy and it was shown that the borosilicate glass compositions were characterised by a slightly lower mean uranium oxidation state than the aluminosilicate counterparts. This had an impact upon the durability, and uranium within glasses of higher mean oxidation states was dissolved more readily. All material showed dissolution rates that were comparable to simulant high level radioactive waste glasses, while the borosilicate-based formulations melted at a temperature suitable for modern vitrification technologies used in radioactive waste applications. These data highlights the potential for vitrification of hazardous radioactive Magnox sludge waste in borosilicate or aluminosilicate glass formulations, with the potential to achieve >95 % reduction in conditioned waste volume over the current baseline plan
What Attracts Men Who Batter to Their Partners? An Exploratory Study
Men who batter, because of particular personality traits and sense of entitlement,
may select partners whom they perceive will be dependent on them,
meet their emotional needs, or be âobjectsâ of physical attractiveness. During
treatment intake, 181 offenders responded to the question, âWhat attracted
you to her (your partner)?â We explored whether men who mentioned their
own needs or her physical traits would engage in more frequent and severe
violence and would have specific forms of personality disorder dimensions or
personality traits. Six categories of attraction, including âher physical traitsâ
and âhis needs,â were derived from the menâs responses. The results showed
that men who focused on their partnersâ physical attractiveness were more
likely to be violent after treatment. Men who cited their own needs for their
attraction had higher scores on borderline personality, alcohol abuse, and
psychotic thinking and lower scores on compulsive-conformingPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89970/1/Saunders-Kurko-Barlow-Crane 2011 What Attracts Men Who Batter to Their Partners JIV.pd
Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low Method
We investigate the "low-" method (developed by the CCFR/NUTEV
collaborations) to determine the neutrino flux in a wide band neutrino beam at
very low energies, a region of interest to neutrino oscillations experiments.
Events with low hadronic final state energy (of 1, 2 and 5 GeV)
were used by the MINOS collaboration to determine the neutrino flux in their
measurements of neutrino () and antineutrino (\nub_\mu) total cross
sections. The lowest energy for which the method was used in MINOS is
3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the
cross sections are dominated by inelastic processes. We investigate the
application of the method to determine the neutrino flux for ,
\nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by
quasielastic scattering and (1232) resonance production. We find that
the method can be extended to low energies by using values of 0.25
and 0.50 GeV, which is feasible in fully active neutrino detectors such as
MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
- âŠ