39 research outputs found

    Leveraging Independent Management and Chief Engineer Hierarchy: Vertically and Horizontally-Derived Technical Authority Value

    Get PDF
    In the development of complex spacecraft missions, project management authority is usually extended hierarchically from NASA's highest agency levels down to the implementing institution's project team level, through both the center and the program. In parallel with management authority, NASA utilizes a complementary, but independent, hierarchy of technical authority (TA) that extends from the agency level to the project, again, through both the center and the program. The chief engineers (CEs) who serve in this technical authority capacity oversee and report on the technical status and ensure sound engineering practices, controls, and management of the projects and programs. At the lowest level, implementing institutions assign project CEs to technically engage projects, lead development teams, and ensure sound technical principles, processes, and issue resolution. At the middle level, programs and centers independently use CEs to ensure the technical success of their projects and programs. At the agency level, NASA's mission directorate CEs maintain technical cognizance over every program and project in their directorate and advise directorate management on the technical, cost, schedule, and programmatic health of each. As part of this vertically-extended CE team, a program level CE manages a continually varying balance between penetration depth and breadth across his or her assigned missions. Teamwork issues and information integration become critical for management at all levels to ensure value-added use of both the synergy available between CEs at the various agency levels, and the independence of the technical authority at each organization

    Managing Small Spacecraft Projects: Less is Not Easier

    Get PDF
    Managing small, low cost missions (class C or D) is not necessarily easier than managing a full flagship mission. Yet, small missions are typically considered easier to manage and used as a training ground for developing the next generation of project managers. While limited resources can be a problem for small missions, in reality most of the issues inherent in managing small projects are not the direct result of limited resources. Instead, problems encountered by managers of small spacecraft missions often derive from 1) the perception that managing small projects is easier if something is easier it needs less rigor and formality in execution, 2) the perception that limited resources necessitate or validate omitting standard management practices, 3) less stringent or unclear guidelines or policies for small projects, and 4) stakeholder expectations that are not consistent with the size and nature of the project. For example, the size of a project is sometimes used to justify not building a full, detailed integrated master schedule. However, while a small schedule slip may not be a problem for a large mission, it can indicate a serious problem for a small mission with a short development phase, highlighting the importance of the schedule for early identification of potential issues. Likewise, stakeholders may accept a higher risk posture early in the definition of a low-cost mission, but as launch approaches this acceptance may change. This presentation discusses these common misconceptions about managing small, low cost missions, the problems that can result, and possible solutions

    Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    Get PDF
    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution

    Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Get PDF
    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution

    FM Workshop Panel Integrating Fault Management: How Does It Fit?

    Get PDF
    No abstract availabl

    Heritage Systems Engineering Lessons from NASA Deep Space Missions

    Get PDF
    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution

    Life Cycle Cost Growth Study for the Discovery and New Frontiers Program Office

    Get PDF
    The D&NF Program Office LCC Management Study provides a detailed look at the drivers underlying cost overruns and schedule delays for five D&NF missions. While none of the findings are new, the study underlines the importance of continued emphasis on sound project management techniques: a clean project management structure with a clear definition of roles and responsibilities across the various partners in a project, an understanding of institutional standards and procedures and any differences among the partners, and the critical need for a comprehensive IMS that can be used easily and routinely to identify potential threats to the critical path. The study also highlights the continuing need for realistic estimates of the total LCC. Sufficient time and resources must be allocated early in a project to ensure that the appropriate trade studies and analyses are performed across all aspects of a mission: spacecraft, ground system, operations concept, and fault management, to ensure that proposed and confirmed costs truly reflect the resource requirements over the entire mission life cycle. These studies need to include a realistic review of the assumptions underlying the use of new technologies, the integration of heritage and new hardware and software into the total mission environment, and any development and test savings based on heritage technology and lessons learned. Finally, the LCC Management Study stresses the need to listen to, carefully consider, and take positive action regarding the issues raised during reviews by the expert review teams

    Planning and Estimation of Operations Support Requirements

    Get PDF
    Life Cycle Cost (LCC) estimates during the proposal and early design phases, as well as project replans during the development phase, are heavily focused on hardware development schedules and costs. Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead to de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Any LCC growth can directly impact the programs' ability to fund new missions, and even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations. The National Aeronautics and Space Administration (NASA) D&NF Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns at or after launch due to underestimation of the complexity and supporting requirements for operations activities; the fifth mission had not launched at the time of the mission. The drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This paper updates the D&NF LCC study, looking at the operations (phase E) cost drivers in more detail and extending the study to include 2 additional missions and identifies areas for increased emphasis by project management in order to improve the fidelity of operations estimates

    Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    Get PDF
    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, particularly as fault management development issues affect operations and the development of operations capabilities

    Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Space Missions

    Get PDF
    Use of heritage and new technology is necessary/enabling to implementing small, low cost missions, yet overruns decrease the ability to sustain future mission flight rates The majority of the cost growth drivers seen in the D&NF study were embedded early during formulation phase and later realized during the development and I&T phases Cost drivers can be avoided or significantly decreased by project management and SE emphasis on early identification of risks and realistic analyses SE processes that emphasize an assessment of technology within the mission system to identify technical issues in the design or operational use of the technology. Realistic assessment of new and heritage spacecraft technology assumptions , identification of risks and mitigation strategies. Realistic estimates of effort required to inherit existing or qualify new technology, identification of risks to estimates and develop mitigation strategies. Allocation of project reserves for risk-based mitigation strategies of each individual area of heritage or new technology. Careful tailoring of inheritance processes to ensure due diligence
    corecore