7 research outputs found

    Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride

    Get PDF
    Optically addressable spins in materials are important platforms for quantum technologies, such as repeaters and sensors. Identification of such systems in two-dimensional (2d) layered materials offers advantages over their bulk counterparts, as their reduced dimensionality enables more feasible on-chip integration into devices. Here, we report optically detected magnetic resonance (ODMR) from previously identified carbon-related defects in 2d hexagonal boron nitride (hBN). We show that single-defect ODMR contrast can be as strong as 6% and displays a magnetic-field dependence with both positive or negative sign per defect. This bipolarity can shed light into low contrast reported recently for ensemble ODMR measurements for these defects. Further, the ODMR lineshape comprises a doublet resonance, suggesting either low zero-field splitting or hyperfine coupling. Our results offer a promising route towards realising a room-temperature spin-photon quantum interface in hexagonal boron nitride

    A quantum coherent spin in a two-dimensional material at room temperature

    Full text link
    Quantum networks and sensing require solid-state spin-photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration, ideally at ambient conditions. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here, we report quantum coherent control under ambient conditions of a single-photon emitting defect spin in a a two-dimensional material, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is governed predominantly by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results allow for a room-temperature spin qubit coupled to a multi-qubit quantum register or quantum sensor with nanoscale sample proximity

    Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances

    No full text
    We demonstrate the strong coupling of direct transition excitons in tungsten disulfide (WS2) with collective plasmonic resonances at room temperature. We use open plasmonic cavities formed by periodic arrays of metallic nanoparticles. We show clear anti-crossings with monolayer, bilayer, and thicker multilayer WS2 on top of the nanoparticle array. The Rabi energy of such hybrid system varies from SO to 100 meV from monolayers to 16 layers, respectively, while it does not scale with the square root of the number of layers as expected for collective strong coupling. We prove that out-of-plane coupling components can be disregarded because the normal field is screened due to the high refractive index contrast of the dielectric layers. Even though the in-plane dipole moments of the excitons decrease beyond monolayers, the strong in-plane field distributed in the flake can still enhance the coupling strength with multilayers. The achieved coherent coupling of TMD multilayers with open cavities could be exploited for manipulating the dynamics and transport of excitons in 2D semiconductors and developing ultrafast spin-valley tronic devices
    corecore