176 research outputs found

    Hidden Fermi-liquid charge transport in the antiferromagnetic phase of the electron-doped cuprates

    Full text link
    Systematic analysis of the planar resistivity, Hall effect and cotangent of the Hall angle for the electron-doped cuprates reveals underlying Fermi-liquid behavior even deep in the antiferromagnetic part of the phase diagram. The transport scattering rate exhibits a quadratic temperature dependence, and is nearly independent of doping, compound and carrier type (electrons vs. holes), and hence universal. Our analysis moreover indicates that the material-specific resistivity upturn at low temperatures and low doping has the same origin in both electron- and hole-doped cuprates.Comment: To appear in PR

    Magnetic-field-induced transition in BaVS3

    Full text link
    The metal-insulator transition (MIT) of BaVS3 is suppressed under pressure and above the critical pressure of p~2GPa the metallic phase is stabilized. We present the results of detailed magnetoresistivity measurements carried out at pressures near the critical value, in magnetic fields up to B=12T. We found that slightly below the critical pressure the structural tetramerization -- which drives the MIT -- is combined with the onset of magnetic correlations. If the zero-field transition temperature is suppressed to a sufficiently low value (T_MI<15K), the system can be driven into the metallic state by application of magnetic field. The main effect is not the reduction of T_MI with increasing B, but rather the broadening of the transition due to the applied magnetic field. We tentatively ascribe this phenomenon to the influence on the magnetic structure coupled to the bond-order of the tetramers.Comment: 5 pages, 5 figure

    Diagrammatic content of the DMFT for the Holstein polaron problem in finite dimensions

    Full text link
    In the context of the Holstein polaron problem it is shown that the dynamical mean field theory (DMFT) corresponds to the summation of a special class of local diagrams in the skeleton expansion of the self-energy. In the real space representation, these local diagrams are characterized by the absence of vertex corrections involving phonons at different lattice sites. Such corrections vanish in the limit of infinite dimensions, for which the DMFT provides the exact solution of the Holstein polaron problem. However, for finite dimensional systems the accuracy of the DMFT is limited. In particular, it cannot describe correctly the adiabatic spreading of the polaron over multiple lattice sites. Arguments are given that the DMFT limitations on vertex corrections found for the Holstein polaron problem persist for finite electron densities and arbitrary phonon dispersion.Comment: 5 pages, 3 figure

    Charge Dynamics in Cuprate Superconductors

    Full text link
    In this lecture we present some interesting issues that arise when the dynamics of the charge carriers in the CuO2_2 planes of the high temperature superconductors is considered. Based on the qualitative picture of doping, set by experiments and some previous calculations, we consider the strength of various inter and intra-cell charge transfer susceptibilities, the question of Coulomb screening and charge collective modes. The starting point is the usual p-d model extended by the long range Coulomb (LRC) interaction. Within this model it is possible to examine the case in which the LRC forces frustrate the electronic phase separation, the instability which is present in the model without an LRC interaction. While the static dielectric function in such systems is negative down to arbitrarily small wavevectors, the system is not unstable. We consider the dominant electronic charge susceptibilities and possible consequences for the lattice properties.Comment: 14 pages, 15 figures, latex, to be published in "From Quantum Mechanics to Technology", Lecture Notes in Physics, Springe

    Angle-resolved photoemission spectroscopy study of HgBa2_{2}CuO4+δ_{4+\delta}

    Full text link
    HgBa2_{2}CuO4+δ_{4+\delta} (Hg1201) has been shown to be a model cuprate for scattering, optical, and transport experiments, but angle-resolved photoemission spectroscopy (ARPES) data are still lacking owing to the absence of a charge-neutral cleavage plane. We report on progress in achieving the experimental conditions for which quasiparticles can be observed in the near-nodal region of the Fermi surface. The d-wave superconducting gap is measured and found to have a maximum of 39 meV. At low temperature, a kink is detected in the nodal dispersion at approximately 51 meV below the Fermi level, an energy that is different from other cuprates with comparable Tc_c. The superconducting gap, Fermi surface, and nodal band renormalization measured here provide a crucial momentum-space complement to other experimental probes
    corecore