9 research outputs found

    Ash concrete with polystyrene waste

    Get PDF
    The paper presents the experimental results of mechanical strengths obtained on the concrete prepared with different types of wastes. Fly ash was used as cementitious material and polystyrene granules were used as substitution of aggregates. The properties of concrete such as density, compressive strength, flexural strength and splitting strength were investigated having in view the waste substitution. The results show that the concrete with fly ash and polystyrene granules in reduced dosages had characteristics of structural concrete

    The Influence of the Curing Conditions on the Behavior of Jute Fibers Reinforced Concrete Cylinders

    Get PDF
    This paper presents an innovative method of reinforcement of concrete based on the use of the Jute fibers composites. These renewable raw bioresource fibers are available at a low cost. Moreover, they can be compared to Glass Fiber-Reinforced Polymer (GFRP) by enhancing the resistance of Jute Fiber-Reinforced Polymer (JFRP), while improving the compatibility between the fiber and the resin. For that purpose, this paper presents an experimental study that evaluates the influence of the curing conditions (time and temperature) on the behavior of JFRP laminates and concrete members strengthened by JFRP. The curing conditions at 30 °C for 2h 30min and at 50 °C for 1 h were the only two parameters studied and determined on the basis of Sikadur 330 properties and preliminary tests. Through the experimental tests, the maximum load capacity and observed failure modes are investigated. The results indicated that the curing at 30 °C for 2h 30min is the optimum curing condition. In addition, a low difference in the maximum load capacity was noted in the case of 50 °C. As to the failure modes, all the specimens cured with additional heat before being left under room conditions, have shown the ductile mode failure, especially in the case of specimens cured at 30 °C during 2h 30min. The analytical model conducted in this paper predicts the elastic modulus depending on temperature. The obtained results and proposed model can be used as input parameters in the analysis and design of externally strengthened members with Jute FRP composites

    Zeolites from power plant ash for waste water treatment

    Get PDF
    The capitalisation of ash from power plant for obtaining zeolites is very interesting, because obtained products have high environmental applications. Zeolites may be easily obtained from ash by direct alkaline conversion processes, diffusion process and microwave. The zeolites have been researched for a variety of environmental applications in agricultural, they have remarkable properties: cation-exchange, adsorption, and molecular sieving properties. From the types of zeolites which may be obtained, in this study are presented different zeolitic products for wastewater with high CEC. The zeolitic products which were obtained were analyzed as composition and properties. The synthesized products provide a significant increase of CEC and a high ability to adsorb heavy metal ions. The aim of this study is establish the experimental conditions f or power plant ash zeolitization. On the base of their cation-exchange properties, zeolites can be use for cation-exchange in wastewater

    Statistical Analysis of the Tensile Strength of Coal Fly Ash Concrete with Fibers Using Central Composite Design

    Get PDF
    The influence of coal fly ash and glass fiber waste on the tensile strength of cement concrete was studied using central composite design. Coal fly ash was used to replace 10% of the cement in the concrete mix. Glass fiber was added to improve the tensile properties of the concrete in different dosages and lengths. In total, 14 mixes were investigated, one only with 10% coal fly ash replacement of cement and the other thirteen were determined by the experimental design. Using analysis of variance, the order of importance of the variables was established for each property (flexural strength and split tensile strength). From the nonlinear response surfaces, it was found that higher values of flexural strength were obtained for fibers longer than 12 mm and at a dosage of 1-2%. For split tensile strength, higher values were obtained for fibers with a length of 19–28 mm and at a dosage of 1–1.5%

    Experimental Study on Hollow Blocks with Wastes

    No full text
    The article presents an experimental study on concrete blocks prepared by using waste types such as fly ash as a cement substitution, waste of plastic bottles and wood waste as replacements for sand and polyester fibers waste as a dispersed reinforcement. The mechanical characteristics of concrete with fly ash and polyester fibers were determined. The influence of the type and dosage of waste on the mechanical strength is discussed. The concretes with fly ash and different dosages of waste were used for manufacturing hollow blocks that were tested in compression, and the behavior under load was analyzed. Failure in compression of hollow blocks was gradual and ductile

    Innovative Passive and Environmentally Friendly System for Improving the Energy Performance of Buildings

    No full text
    The aim of the study is to develop a system for converting, accumulating, and delivering solar energy that is based on the development of an innovative solar panel with heat pipes and a heat storage wall, for the construction of passive structures. The novel aspect of this experiment is the utilization of concrete walls that have different recyclable materials added to their structure in various proportions. The solar energy from the sunny façades is transformed by this system into thermal energy, which is then transferred by integrated heat pipes in a massive element with high thermal inertia. Using insulated shutters, thermal energy can be stored during the day and released at night to keep the room at a comfortable temperature. In order to integrate the modules into the solar recovery system, four concrete samples were cast with a blend of standard and waste aggregates. Four heat fluxes of 100 W/m2, 150 W/m2, 200 W/m2, and 250 W/m2 were applied to each global system. Thermal imaging data and numerical simulations both supported the findings of temperature sensors. The most effective mixture, fly ash and chopped PET, delivered temperatures that were, on average, 3.3% higher at the end of the charging cycle than those measured for the control sample. The discharging cycle of the concrete block with fly ash and sawdust was the most effective, with an average temperature loss of 5.0 °C as compared to 5.5 °C for the control sample, on average

    Experimental Investigation on Mechanical and Thermal Properties of Concrete Using Waste Materials as an Aggregate Substitution

    No full text
    The continuous growth of the concrete industry requires an increased quantity of cement and natural aggregates year after year, and it is responsible for a major part of the global CO2 emissions. These aspects led to rigorous research for suitable raw materials. Taking into account that these raw materials must have a sustainable character and also a low impact on environmental pollution, the replacement of the conventional components of concrete by residual waste can lead to these targets. This paper’s aim is to analyze the density, compressive strength and the thermal conductivity of nine concrete compositions with various rates of waste: four mixes with 10%, 20%, 40% and 60% chopped PET bottles aggregates and 10% fly ash as cement partial substitution; a mix with 60% waste polystyrene of 4–8 mm and 10% fly ash; a mix with 20% waste polystyrene of 4–8 mm, 10% waste polystyrene of 0–4 mm and 10% fly ash; a mix with 50% waste polystyrene of 4–8 mm, 20% waste polystyrene of 0–4 mm and 20% fly ash two mixes with 10% fly ash and 10% and 40% waste sawdust, respectively. Using 60% PET aggregates, 60% polystyrene granules of 4–8 mm, or 20% polystyrene of 0–4 mm together with 50% polystyrene of 4–8 mm led to the obtainment of lightweight concrete, with a density lower than 2000 kg/m3. These mixes also registered the best results from a thermal conductivity point of view, after the concrete mix with 40% saw dust. Regarding compressive strength, the mix with 10% PET obtained a result very close to the reference mix, while those with 20% PET, 40% PET, 30% polystyrene, and 10% saw dust, respectively, registered values between 22 MPa and 25 MPa, values appropriate for structural uses

    Experimental Investigation on Mechanical and Thermal Properties of Concrete Using Waste Materials as an Aggregate Substitution

    No full text
    International audienceThe continuous growth of the concrete industry requires an increased quantity of cement and natural aggregates year after year, and it is responsible for a major part of the global CO2 emissions. These aspects led to rigorous research for suitable raw materials. Taking into account that these raw materials must have a sustainable character and also a low impact on environmental pollution, the replacement of the conventional components of concrete by residual waste can lead to these targets. This paper’s aim is to analyze the density, compressive strength and the thermal conductivity of nine concrete compositions with various rates of waste: four mixes with 10%, 20%, 40% and 60% chopped PET bottles aggregates and 10% fly ash as cement partial substitution; a mix with 60% waste polystyrene of 4–8 mm and 10% fly ash; a mix with 20% waste polystyrene of 4–8 mm, 10% waste polystyrene of 0–4 mm and 10% fly ash; a mix with 50% waste polystyrene of 4–8 mm, 20% waste polystyrene of 0–4 mm and 20% fly ash two mixes with 10% fly ash and 10% and 40% waste sawdust, respectively. Using 60% PET aggregates, 60% polystyrene granules of 4–8 mm, or 20% polystyrene of 0–4 mm together with 50% polystyrene of 4–8 mm led to the obtainment of lightweight concrete, with a density lower than 2000 kg/m3. These mixes also registered the best results from a thermal conductivity point of view, after the concrete mix with 40% saw dust. Regarding compressive strength, the mix with 10% PET obtained a result very close to the reference mix, while those with 20% PET, 40% PET, 30% polystyrene, and 10% saw dust, respectively, registered values between 22 MPa and 25 MPa, values appropriate for structural uses
    corecore