39 research outputs found

    Evolution of Field Dwarf Galaxies with GEMS

    Full text link
    We present a study of the evolution of late-type field dwarfs over the last ~ 1.9 Gyr, based on HST ACS observations carried out as part of the GEMS survey. This study is amongst the first to probe the evolution of dwarfs over such a large timescale. The comparison of structural properties, particularly size and scale length, indicates that the dwarfs in the redshift range z ~ 0.01 to 0.15 (look-back times up to 1.9 Gyr) are more extended than local dwarfs. We argue that this difference is due to the star formation activity becoming more centrally concentrated in late-type dwarfs over the last ~ 1.9 Gyr. We discuss several possible causes for this evolution. We also find a lack of blue compact dwarfs in the GEMS sample and interpret this as indicative of the fact that strong, centrally concentrated star formation is a feature of evolved dwarfs that are entering their final stages of evolution.Comment: 4 pages, to appear in the proceedings of IAUC198: Near-Field Cosmology with Dwarf Elliptical Galaxies, Helmut Jerjen and Bruno Binggeli, ed

    A new automatic method to identify galaxy mergers - I. Description and application to the Space Telescope A901/902 Galaxy Evolution Survey

    Get PDF
    We present a new automatic method to identify galaxy mergers using the morphological information contained in the residual images of galaxies after the subtraction of a smooth SĂ©rsic model. The removal of the bulk signal from the host galaxy light is done with the aim of detecting the much fainter and elusive minor mergers. The specific morphological parameters that are used in the merger diagnostic suggested here are the residual flux fraction (RFF) and the asymmetry of the residuals [A(Res)]. The new diagnostic has been calibrated and optimized so that the resulting merger sample is very complete. However, the contamination by non-mergers is also high. If the same optimization method is adopted for combinations of other structural parameters such as the Concentration, Asymmetry, clumpineSs (CAS) system, the merger indicator we introduce yields merger samples of equal or higher statistical quality than the samples obtained through the use of other structural parameters. We investigate the ability of the method presented here to select minor mergers by identifying a sample of visually classified mergers that would not have been picked up by the use of the CAS system, when using its usual limits. However, given the low prevalence of mergers among the general population of galaxies and the optimization used here, we find that the merger diagnostic introduced in this work is best used as a negative merger test, that is, it is very effective at selecting non-merging galaxies. In common with all the currently available automatic methods, the sample of merger candidates selected is heavily contaminated by non-mergers, and further steps are needed to produce a clean merger sample. This merger diagnostic has been developed using the Hubble Space Telescope/ACS F606W images of the A901/902 multiple cluster system (z= 0.165) obtained by the Space Telescope A901/902 Galaxy Evolution Survey team. In particular, we have focused on a mass- and magnitude-limited sample (log M/M⊙ > 9.0, RVega, Total≀ 23.5 mag) which includes 905 cluster galaxies and 655 field galaxies of all morphological type

    Optically-passive spirals: The missing link in gradual star formation suppression upon cluster infall

    Get PDF
    Galaxies migrate from the blue cloud to the red sequence when their star formation is quenched. Here, we report on galaxies quenched by environmental effects and not by mergers or strong AGN as often invoked: They form stars at a reduced rate which is optically even less conspicuous, and manifest a transition population of blue spirals evolving into S0 galaxies. These 'optically passive' or 'red spirals' are found in large numbers in the STAGES project (and by Galaxy Zoo) in the infall region of clusters and groups.Comment: Proceedings of "The Starburst-AGN connection" conference held in Shanghai, Oct 27-31, 200

    Obscured star formation in intermediate-density environments:A Spitzer study of the Abell 901/902 supercluster

    Get PDF
    We explore the amount of obscured star formation as a function of environment in the Abell 901/902 (A901/902) supercluster at z = 0.165 in conjunction with a field sample drawn from the A901 and CDFS fields, imaged with the Hubble Space Telescope as part of the Space Telescope A901/902 Galaxy Evolution Survey and Galaxy Evolution from Morphology and Spectral Energy Distributions (SEDs) Survey. We combine the combo-17 near-UV/optical SED with Spitzer 24 mu m photometry to estimate both the unobscured and obscured star formation in galaxies with M-* > 10(10) M-circle dot. We find that the star formation activity in massive galaxies is suppressed in dense environments, in agreement with previous studies. Yet, nearly 40% of the star-forming (SF) galaxies have red optical colors at intermediate and high densities. These red systems are not starbursting; they have star formation rates (SFRs) per unit stellar mass similar to or lower than blue SF galaxies. More than half of the red SF galaxies have low infrared-to-ultraviolet (IR-to-UV) luminosity ratios, relatively high Sersicindices, and they are equally abundant at all densities. They might be gradually quenching their star formation, possibly but not necessarily under the influence of gas-removing environmental processes. The other greater than or similar to 40% of the red SF galaxies have high IR-to-UV luminosity ratios, indicative of high dust obscuration. They have relatively high specific SFRs and are more abundant at intermediate densities. Our results indicate that while there is an overall suppression in the SF galaxy fraction with density, the small amount of star formation surviving the cluster environment is to a large extent obscured, suggesting that environmental interactions trigger a phase of obscured star formation, before complete quenching
    corecore