275 research outputs found

    Event-Object Reasoning with Curated Knowledge Bases: Deriving Missing Information

    Full text link
    The broader goal of our research is to formulate answers to why and how questions with respect to knowledge bases, such as AURA. One issue we face when reasoning with many available knowledge bases is that at times needed information is missing. Examples of this include partially missing information about next sub-event, first sub-event, last sub-event, result of an event, input to an event, destination of an event, and raw material involved in an event. In many cases one can recover part of the missing knowledge through reasoning. In this paper we give a formal definition about how such missing information can be recovered and then give an ASP implementation of it. We then discuss the implication of this with respect to answering why and how questions.Comment: 13 page

    Encoding Higher Level Extensions of Petri Nets in Answer Set Programming

    Full text link
    Answering realistic questions about biological systems and pathways similar to the ones used by text books to test understanding of students about biological systems is one of our long term research goals. Often these questions require simulation based reasoning. To answer such questions, we need formalisms to build pathway models, add extensions, simulate, and reason with them. We chose Petri Nets and Answer Set Programming (ASP) as suitable formalisms, since Petri Net models are similar to biological pathway diagrams; and ASP provides easy extension and strong reasoning abilities. We found that certain aspects of biological pathways, such as locations and substance types, cannot be represented succinctly using regular Petri Nets. As a result, we need higher level constructs like colored tokens. In this paper, we show how Petri Nets with colored tokens can be encoded in ASP in an intuitive manner, how additional Petri Net extensions can be added by making small code changes, and how this work furthers our long term research goals. Our approach can be adapted to other domains with similar modeling needs

    Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering

    Full text link
    Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.Comment: 9 pages, 3 figures, AAAI 201
    • …
    corecore