7 research outputs found

    DataSheet_1_Revealing the mechanisms of the bioactive ingredients accumulation in Polygonatum cyrtonema by multiomics analyses.doc

    No full text
    Polygonatum cyrtonema is a medicinal and edible herb rich in polysaccharides, steroidal saponins, and flavonoids that has been widely used as a food, vegetable, and medicine over the years. Although previous studies have preliminarily explored the metabolic and transcriptional regulatory mechanisms of the main secondary metabolites in P. cyrtonema, the complex mechanism of microRNA (miRNA)-mediated posttranscriptional regulation remains unclear. Metabolome analysis showed that iso-ophiopogonanone B, (25S)-pratioside D1, disporopsin, and isodiosgenin-Glc-Glc, which are associated with intermediates in the flavonoids and saponins pathways, were significantly upregulated in the stem and leaf compared with the rhizome, and most saccharides, including arabinose, cellobiose, maltotetraose, and panose, showed the opposite trend, suggesting that they may contribute to the formation and accumulation of the main active ingredients in P. cyrtonema. We found that 4-hydroxymandelonitrile have a relatively good inhibitory effect on α-glucosidase, indicating that it may play a role in hypoglycemic functions. Transcriptome and weighted gene coexpression network analysis (WGCNA) were combined to reveal several candidate genes involved in the accumulation of polysaccharides, saponins, and flavonoids, including PcSQLE, PcCYP71A1, PcSUS, PcFK, and PcMYB102. Integrated analyses of miRNAs and messengerRNAs (mRNAs) showed that novel_miR14, novel_miR49, novel_miR75, and aof_miR164 were negatively correlated with alpha-linolenic acid metabolism and the mitogen activated protein kinase (MAPK) signaling pathway, including PcAOS, PcSPLA2, PcFRK1, and PcDELLA, indicating that these miRNAs may coordinately regulate the biosynthesis of other secondary metabolites in P. cyrtonema. These findings will facilitate in-depth research on the functions of these miRNAs and mRNAs related to the main active substances for pathological and biological regulation, which will be beneficial to provide theoretical guidance for the molecular breeding of P. cyrtonema.</p

    Table_3_Revealing the mechanisms of the bioactive ingredients accumulation in Polygonatum cyrtonema by multiomics analyses.doc

    No full text
    Polygonatum cyrtonema is a medicinal and edible herb rich in polysaccharides, steroidal saponins, and flavonoids that has been widely used as a food, vegetable, and medicine over the years. Although previous studies have preliminarily explored the metabolic and transcriptional regulatory mechanisms of the main secondary metabolites in P. cyrtonema, the complex mechanism of microRNA (miRNA)-mediated posttranscriptional regulation remains unclear. Metabolome analysis showed that iso-ophiopogonanone B, (25S)-pratioside D1, disporopsin, and isodiosgenin-Glc-Glc, which are associated with intermediates in the flavonoids and saponins pathways, were significantly upregulated in the stem and leaf compared with the rhizome, and most saccharides, including arabinose, cellobiose, maltotetraose, and panose, showed the opposite trend, suggesting that they may contribute to the formation and accumulation of the main active ingredients in P. cyrtonema. We found that 4-hydroxymandelonitrile have a relatively good inhibitory effect on α-glucosidase, indicating that it may play a role in hypoglycemic functions. Transcriptome and weighted gene coexpression network analysis (WGCNA) were combined to reveal several candidate genes involved in the accumulation of polysaccharides, saponins, and flavonoids, including PcSQLE, PcCYP71A1, PcSUS, PcFK, and PcMYB102. Integrated analyses of miRNAs and messengerRNAs (mRNAs) showed that novel_miR14, novel_miR49, novel_miR75, and aof_miR164 were negatively correlated with alpha-linolenic acid metabolism and the mitogen activated protein kinase (MAPK) signaling pathway, including PcAOS, PcSPLA2, PcFRK1, and PcDELLA, indicating that these miRNAs may coordinately regulate the biosynthesis of other secondary metabolites in P. cyrtonema. These findings will facilitate in-depth research on the functions of these miRNAs and mRNAs related to the main active substances for pathological and biological regulation, which will be beneficial to provide theoretical guidance for the molecular breeding of P. cyrtonema.</p

    DataSheet_2_Revealing the mechanisms of the bioactive ingredients accumulation in Polygonatum cyrtonema by multiomics analyses.doc

    No full text
    Polygonatum cyrtonema is a medicinal and edible herb rich in polysaccharides, steroidal saponins, and flavonoids that has been widely used as a food, vegetable, and medicine over the years. Although previous studies have preliminarily explored the metabolic and transcriptional regulatory mechanisms of the main secondary metabolites in P. cyrtonema, the complex mechanism of microRNA (miRNA)-mediated posttranscriptional regulation remains unclear. Metabolome analysis showed that iso-ophiopogonanone B, (25S)-pratioside D1, disporopsin, and isodiosgenin-Glc-Glc, which are associated with intermediates in the flavonoids and saponins pathways, were significantly upregulated in the stem and leaf compared with the rhizome, and most saccharides, including arabinose, cellobiose, maltotetraose, and panose, showed the opposite trend, suggesting that they may contribute to the formation and accumulation of the main active ingredients in P. cyrtonema. We found that 4-hydroxymandelonitrile have a relatively good inhibitory effect on α-glucosidase, indicating that it may play a role in hypoglycemic functions. Transcriptome and weighted gene coexpression network analysis (WGCNA) were combined to reveal several candidate genes involved in the accumulation of polysaccharides, saponins, and flavonoids, including PcSQLE, PcCYP71A1, PcSUS, PcFK, and PcMYB102. Integrated analyses of miRNAs and messengerRNAs (mRNAs) showed that novel_miR14, novel_miR49, novel_miR75, and aof_miR164 were negatively correlated with alpha-linolenic acid metabolism and the mitogen activated protein kinase (MAPK) signaling pathway, including PcAOS, PcSPLA2, PcFRK1, and PcDELLA, indicating that these miRNAs may coordinately regulate the biosynthesis of other secondary metabolites in P. cyrtonema. These findings will facilitate in-depth research on the functions of these miRNAs and mRNAs related to the main active substances for pathological and biological regulation, which will be beneficial to provide theoretical guidance for the molecular breeding of P. cyrtonema.</p

    Fluorographene with High Fluorine/Carbon Ratio: A Nanofiller for Preparing Low‑κ Polyimide Hybrid Films

    No full text
    Sufficient amounts of fluorographene sheets with different sheet-size and fluorine/carbon ratio were synthesized for preparing of fluorographene/polyimide hybrids in order to explore the effect of fluorographene on the dielectric properties of hybrid materials. It is found that the fluorine/carbon ratio, width of band gap, and sheet-size of fluorographene play the important roles in determining the final dielectric properties of hybrids. The fluorographene with high fluorine/carbon ratio (F/C ≈ 1) presents broaden band gap, enhanced hydrophobicity, good dispersity and thermal stability, etc. Even at a very low filling, only 1 wt %, its polyimide hybrids exhibited drastically reduced dielectric constants as low as 2.1 without sacrificing thermal stability, improved mechanical properties obviously and decreased water absorption by about 120% to 1.0 wt %. This provides a novel route for improving the dielectric properties of materials and a new thought to carry out the application of fluorographene as an advanced material

    High-Yield Production of Highly Fluorinated Graphene by Direct Heating Fluorination of Graphene-oxide

    No full text
    By employing honeycomb GO with large surface area as the starting materials and using elemental fluorine, we developed a novel, straightforward topotactic route toward highly fluorinated graphene in really large quantities at low temperature. The value of F/C molar ratio approaches to 1.02. Few-layer fluorinated graphene sheets are obtained, among which the yield of monolayered FG sheet is about 10% and the number of layers is mainly in the range of 2–5. Variations in morphology and chemical structure of fluorinated graphene were explored, and some physical properties were reported

    One-Step Preparation of Oxygen/Fluorine Dual Functional MWCNTs with Good Water Dispersibility by the Initiation of Fluorine Gas

    No full text
    It is still a challenge to prepare water-dispersible carbon nanotubes which are proved to have great potential in numerous applications. In this present work, as low as 2% fluorine gas was used as initiator to prepare oxygen/fluorine dual functional MWCNTs (OF-MWCNTs) with good water dispersibility through a one-step method under oxygen atmosphere. The aromatic structure of OF-MWCNTs is reserved to some extent resulting in better electrical conductivity than pure fluorinated MWCNTs (F-MWCNTs). The amount of oxygen atoms and fluorine atoms (hereinafter referred to as “O-content” and “F-content”) of OF-MWCNTs is up to 8.8% and 7.5%. Fourier transform infrared spectroscopy (FTIR) manifests that - COOH is covalently bonded onto the surface of OF-MWCNTs. In addition, the OF-MWCNTs sample is pH-sensitive, which further validates the successful introduction of -COOH. The successful covalent attachment of -COOH onto MWCNTs dramatically improves the hydrophilia of MWCNTs which always present hydrophobic character. It is deduced that fluorine creates reactive sites for oxygen, increases the oxygen content, and eventually results in the dispersibility of OF-MWCNTs in water. The corresponding hydrophilic OF-MWCNTs film shows good performance for separating oil-in-water emulsions. Meanwhile, the good dispersibility of OF-MWCNTs in organic solvents also makes it possible to be applied in various composites

    Correlation analysis between the static and the changed neutrophil-to-lymphocyte ratio and in-hospital mortality in critical patients with acute heart failure

    No full text
    Association between neutrophil-to-lymphocyte ratio (NLR) on admission and poor prognosis in patients with acute heart failure (AHF) has been well established. However, the relationship between dynamic changes in NLR and in-hospital mortality in AHF patients has not been studied. Our purpose was to determine if an early change in NLR within the first week after AHF patients was admitted to intensive care unit (ICU) was associated with in-hospital mortality. Data from the medical information mart for intensive care IV (the MIMIC-IV) database was analyzed. The effect of baseline NLR on in-hospital mortality in critical patients with AHF was evaluated utilizing smooth curve fitting and multivariable logistic regression analysis. Moreover, comparison of the dynamic change in NLR among survivors and non-survivors was performed using the generalized additive mixed model (GAMM). There were 1169 participants who took part in the present study, 986 of whom were in-hospital survivors and 183 of whom were in-hospital non-survivors. The smooth curve fitting revealed a positive relationship between baseline NLR and in-hospital mortality, and multivariable logistic regression analysis indicated that baseline NLR was an independent risk factor for in-hospital mortality (OR 1.04, 95% CI 1.02,1.07, P-value = 0.001). After adjusting for confounders, GAMM showed that the difference in NLR between survivors and non-survivors grew gradually during the first week after ICU admission, and the difference grew by an average of 0.51 per day (β = 0.51, 95% CI 0.45–0.56, P-value Baseline NLR was associated with poor prognosis in critical patients with AHF. Early rises in NLR were linked to higher in-hospital mortality, which suggests that keeping track of how NLR early changes might help identify short-term prognosis of critical patients with AHF.</p
    corecore