54 research outputs found

    Aquagrams: Water spectral pattern as characterization of hydrogenated nanomaterial

    Get PDF
    Akvafotomika je novi pristup u nauci o određivanju osobina vode, vodenih rastvora i prisustva u malim koncentracijama biomolekula i nanomaterijala u vodi. Ova metoda se zasniva na karakterističnim frekvencijama vode u infracrvenom (IR) spektru na osnovu kojih se izrađuje dijagram oblika 'paukove mreže'. Promene u spektralnom dijagramu 'paukove mreže' čiste vode, daje informaciju o prisustvu i organizaciji dodate materije u vodu. Intenzitet poremećaja spektara je proporcionalan koncentraciji i organizaciji unete materije. Umesto da se identifikuju čestice (mikro, nano) u vodi, kao što je do sada bio slučaj (a što je dosta teško kada se radi o malim koncentracijama), u akvagramu se identifikuju najmanje promene matriksa vode na karakterističnim frekvencijama. Karakter i intenzitet tih promena u našem istraživanju omogućio je analizu interakciju vode i hidrogenizovanog fulerenskog nanomaterijala. Infracrvena spektroskopija, sa novim razvijenim konceptom, 'paukovom mrežom', se koristi da se ispita organizacija novo nastale supstance, kao mešavina harmonizovanog hidrogeniranog fulerena (NHS) i demineralizovane vode. Analiza akvagrama pokazuje da se NHS organizovao u formu Fibonačijevog niza (Φ/φ) i da preko vodoničnih veza deluje na okruženje. Efekat razblaživanja NHS supstance na vodu se takođe analizira pomoću akvagrama. Kako su neki biološki molekuli (mikrotubule, kolagen, klatrin i dr) uređeni po Fibonačijevom nizu to prisustvo NHS u biološkim tkivima može postati pokretačka snaga prirodnog procesa samo-reparacije, koja je u stanju da obnovi oštećene funkcije biomolekula. Ova istraživanja otvaraju mogućnost razvoja nanomedicine na bazi hidrogenizovanih nanomaterijala u vodi koji su uređeni i sposobni da generišu vibracione modove po Fibonačijemom nizu.Aquaphotomics is a novel approach in science to water and aqueous solutions investigation. It is based on near infrared spectroscopy (NIR), which in our current research is used for the analysis of interaction of water and hydrogenated nanomaterial. Infrared spectroscopy, with a new developed concept that of aquaphotomics, is used to investigate the organization of matter as a mixture of harmonized hydrogenated fullerene (nano-harmonized substance-NHS) and pure water. Composition of matter follows a harmonized form by Fibonacci law (Φ/φ). The effect of dilution on nano-harmonized substance is analyzed and the results of near infrared spectra are presented in the form of aquagrams. The presence of NHS in biological tissues is a driving force of natural self-assembly process, which is capable of restoration of damaged functions of biomolecules

    Aquagrams: Water spectral pattern as characterization of hydrogenated nanomaterial

    Get PDF
    Akvafotomika je novi pristup u nauci o određivanju osobina vode, vodenih rastvora i prisustva u malim koncentracijama biomolekula i nanomaterijala u vodi. Ova metoda se zasniva na karakterističnim frekvencijama vode u infracrvenom (IR) spektru na osnovu kojih se izrađuje dijagram oblika 'paukove mreže'. Promene u spektralnom dijagramu 'paukove mreže' čiste vode, daje informaciju o prisustvu i organizaciji dodate materije u vodu. Intenzitet poremećaja spektara je proporcionalan koncentraciji i organizaciji unete materije. Umesto da se identifikuju čestice (mikro, nano) u vodi, kao što je do sada bio slučaj (a što je dosta teško kada se radi o malim koncentracijama), u akvagramu se identifikuju najmanje promene matriksa vode na karakterističnim frekvencijama. Karakter i intenzitet tih promena u našem istraživanju omogućio je analizu interakciju vode i hidrogenizovanog fulerenskog nanomaterijala. Infracrvena spektroskopija, sa novim razvijenim konceptom, 'paukovom mrežom', se koristi da se ispita organizacija novo nastale supstance, kao mešavina harmonizovanog hidrogeniranog fulerena (NHS) i demineralizovane vode. Analiza akvagrama pokazuje da se NHS organizovao u formu Fibonačijevog niza (Φ/φ) i da preko vodoničnih veza deluje na okruženje. Efekat razblaživanja NHS supstance na vodu se takođe analizira pomoću akvagrama. Kako su neki biološki molekuli (mikrotubule, kolagen, klatrin i dr) uređeni po Fibonačijevom nizu to prisustvo NHS u biološkim tkivima može postati pokretačka snaga prirodnog procesa samo-reparacije, koja je u stanju da obnovi oštećene funkcije biomolekula. Ova istraživanja otvaraju mogućnost razvoja nanomedicine na bazi hidrogenizovanih nanomaterijala u vodi koji su uređeni i sposobni da generišu vibracione modove po Fibonačijemom nizu.Aquaphotomics is a novel approach in science to water and aqueous solutions investigation. It is based on near infrared spectroscopy (NIR), which in our current research is used for the analysis of interaction of water and hydrogenated nanomaterial. Infrared spectroscopy, with a new developed concept that of aquaphotomics, is used to investigate the organization of matter as a mixture of harmonized hydrogenated fullerene (nano-harmonized substance-NHS) and pure water. Composition of matter follows a harmonized form by Fibonacci law (Φ/φ). The effect of dilution on nano-harmonized substance is analyzed and the results of near infrared spectra are presented in the form of aquagrams. The presence of NHS in biological tissues is a driving force of natural self-assembly process, which is capable of restoration of damaged functions of biomolecules

    The Suzaku Observation of the Nucleus of the Radio-Loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    Get PDF
    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 * 10^{23} cm^{-2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K alpha line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.Comment: Accepted for publication to ApJ. 22 pages, 11 figures (3 color). Uses emulateapj5.sty. Grammatical errors corrected; some references update

    Effects of diabetes and hypertension on macrophage infiltration and matrix expansion in the rat kidney

    Get PDF
    BACKGROUND: In experimental models of diabetes mellitus, aggravation of renal injury by concomitant hypertension has been described. Inflammatory mechanisms contribute to renal damage in both diseases. We investigated whether hypertension and diabetes mellitus act synergistically to induce macrophage infiltration and matrix expansion in the kidney. METHODS: Insulin-dependent diabetes mellitus was induced by streptozotocin injections to hypertensive mRen2-transgenic rats (TGR) and normotensive Sprague-Dawley control rats. Quantitative immunohistochemical examination of kidney tissue sections was used to measure macrophage infiltration and matrix expansion. The expression of MCP-1, Osteopontin, RANTES, ICAM-1 and VCAM-1 was evaluated by real-time RT-PCR. The localization of MCP-1 was studied by immunohistochemistry. RESULTS: Macrophage infiltration was present in the kidney of normotensive diabetic rats. Hypertensive rats exhibited a more marked infiltration of macrophages, regardless of whether diabetes was present or not. Gene expression of ICAM-1, VCAM-1 and RANTES was unaltered whereas Osteopontin and MCP-1 were induced by hypertension. Immunoreactive MCP-1 was slightly increased in diabetic rat kidney podocytes, and more markedly increased in hypertensive animals. Glomerular matrix accumulation was induced by diabetes and hypertension to a similar degree, and was highest in hypertensive, diabetic animals. CONCLUSION: Diabetes mellitus caused a mild, and angiotensin-dependent hypertension a more marked infiltration of macrophages in the kidney. Combination of both diseases led to additive effects on matrix expansion but not on inflammation. Hypertension appears to be a much stronger stimulus for inflammation of the kidney than STZ diabetes, at least in mRen2-transgenic rats

    Diabetic nephropathy: What does the future hold?

    Full text link
    corecore