475 research outputs found
Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium
New inelastic X-ray scattering experiments have been performed on liquid
lithium in a wide wavevector range. With respect to the previous measurements,
the instrumental resolution, improved up to 1.5 meV, allows to accurately
investigate the dynamical processes determining the observed shape of the the
dynamic structure factor, . A detailed analysis of the lineshapes
shows the co-existence of relaxation processes with both a slow and a fast
characteristic timescales, and therefore that pictures of the relaxation
mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure
Structural and Dynamical Anomalies of a Gaussian Core Fluid: a Mode Coupling Theory Study
We present a theoretical study of transport properties of a liquid comprised
of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We
present a theoretical study of transport properties of a liquid comprised of
particles interacting via Gaussian Core pair potential. Shear viscosity and
self-diffusion coefficient are computed on the basis of the mode-coupling
theory, with required structural input obtained from integral equation theory.
Both self-diffusion coefficient and viscosity display anomalous density
dependence, with diffusivity increasing and viscosity decreasing with density
within a particular density range along several isotherms below a certain
temperature. Our theoretical results for both transport coefficients are in
good agreement with the simulation data
Density fluctuations and single-particle dynamics in liquid lithium
The single-particle and collective dynamical properties of liquid lithium
have been evaluated at several thermodynamic states near the triple point. This
is performed within the framework of mode-coupling theory, using a
self-consistent scheme which, starting from the known static structure of the
liquid, allows the theoretical calculation of several dynamical properties.
Special attention is devoted to several aspects of the single-particle
dynamics, which are discussed as a function of the thermodynamic state. The
results are compared with those of Molecular Dynamics simulations and other
theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.
Liquid-like behavior of supercritical fluids
The high frequency dynamics of fluid oxygen have been investigated by
Inelastic X-ray Scattering. In spite of the markedly supercritical conditions
(, ), the sound velocity exceeds the hydrodynamic
value of about 20%, a feature which is the fingerprint of liquid-like dynamics.
The comparison of the present results with literature data obtained in several
fluids allow us to identify the extrapolation of the liquid vapor-coexistence
line in the (, ) plane as the relevant edge between liquid- and
gas-like dynamics. More interestingly, this extrapolation is very close to the
non metal-metal transition in hot dense fluids, at pressure and temperature
values as obtained by shock wave experiments. This result points to the
existence of a connection between structural modifications and transport
properties in dense fluids.Comment: 4 pages, 3 figures, accepted by Phys. Rev. Let
Fluctuating magnetic moments in liquid metals
We re-analyze literature data on neutron scattering by liquid metals to show
that non-magnetic liquid metals possess a magnetic moment that fluctuates on a
picosecond time scale. This time scale follows the motion of the cage-diffusion
process in which an ion rattles around in the cage formed by its neighbors. We
find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga
and Pb, and possibly also in the alkali metals.Comment: 17 pages, 5 figures, submitted to PR
-Scale Decoupling of the Mechanical Relaxation and Diverging Shear Wave Propagation Lengthscale in Triphenylphosphite
We have performed depolarized Impulsive Stimulated Scattering experiments to
observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from
10 - 500 MHz. These measurements, in tandem with previously performed
longitudinal and shear measurements, permit further analyses of the relaxation
dynamics of TPP within the framework of the mode coupling theory (MCT). Our
results provide evidence of coupling between the shear and
longitudinal degrees of freedom up to a decoupling temperature = 231 K. A
lower bound length scale of shear wave propagation in liquids verified the
exponent predicted by theory in the vicinity of the decoupling temperature
A simple measure of memory for dynamical processes described by the generalized Langevin equation
Memory effects are a key feature in the description of the dynamical systems
governed by the generalized Langevin equation, which presents an exact
reformulation of the equation of motion. A simple measure for the estimation of
memory effects is introduced within the framework of this description.
Numerical calculations of the suggested measure and the analysis of memory
effects are also applied for various model physical systems as well as for the
phenomena of ``long time tails'' and anomalous diffusion
Aluminum-silicon Interdiffusion in Screen Printed Metal Contacts for Silicon based Solar Cells Applications☆
Abstract In this work we propose a detailed investigation of the Al – Si interdiffusion that occurs during the firing process of the Al-Si back contact of silicon based solar cells. The investigation is based on high resolution scanning electron microscopy (SEM) and compositional microanalysis with energy dispersive X-Ray microanalysis (EDX). We have found a dependence of Si precipitation in the Al matrix depending on the microstructure of the Al screen printable paste. We suggest a gettering effect promoted by the larger Al particles lying within the Al paste being able to affect the Al paste resistivity, the Al distribution within the BSF region of the solar cell, thus affecting the solar cell performances and finally the Al paste thermal expansion coefficient. Finally we demonstrate that the presence of the glass frit reduces the surface tension and, homogenizes the diffusion process. Reduction of surface tension decreases the internal pressure and increases the Si interdiffusion in Al
Simple theory for spin-lattice relaxation in metallic rare earth ferromagnets
The spin-lattice relaxation time is a key quantity both for the
dynamical response of ferromagnets excited by laser pulses and as the speed
limit of magneto-optical recording. Extending the theory for the electron
paramagnetic resonance of magnetic impurities to spin-lattice relaxation in
ferromagnetic rare earths we calculate for Gd and find a value of
48 ps in very good agreement with time-resolved spin-polarized photoemission
experiments. We argue that the time scale for in metals is
essentially given by the spin-orbit induced magnetocrystalline anisotropy
energy.Comment: 18 pages revtex, 5 uuencoded figure
- …