2,528 research outputs found
Pitch angle distributions of 35-1000 keV protons at quasi-perpendicular interplanetary shocks
The characteristic features of the scatter-free acceleration process near perpendicular shocks are examined in the upstream and downstream pitch angle distributions of 35 to 1000 keV protons. Reasonable quantitative agreement is found between theoretical predictions and observations. The role played by bottle geometries, leading to enhanced acceleration, is highlighted
Magnetic and Transport Properties of Fe-Ag granular multilayers
Results of magnetization, magnetotransport and Mossbauer spectroscopy
measurements of sequentially evaporated Fe-Ag granular composites are
presented. The strong magnetic scattering of the conduction electrons is
reflected in the sublinear temperature dependence of the resistance and in the
large negative magnetoresistance. The simultaneous analysis of the magnetic
properties and the transport behavior suggests a bimodal grain size
distribution. A detailed quantitative description of the unusual features
observed in the transport properties is given
The role of tidal interactions in driving galaxy evolution
We carry out a statistical analysis of galaxy pairs selected from chemical
hydrodynamical simulations with the aim at assessing the capability of
hierarchical scenarios to reproduce recent observational results for galaxies
in pairs. Particularly, we analyse the effects of mergers and interactions on
the star formation (SF) activity, the global mean chemical properties and the
colour distribution of interacting galaxies. We also assess the effects of
spurious pairs.Comment: to appear in "Groups of galaxies in the nearby Universe" ESO
Workshop, (Dec 2005) Santiago, Chil
Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis in Hypertensive Heart Failure
Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use
Tracking Down a Critical Halo Mass for Killing Galaxies through the Growth of the Red-Sequence
Red-sequence galaxies record the history of terminated star-formation in the
Universe and can thus provide important clues to the mechanisms responsible for
this termination. We construct composite samples of published cluster and field
galaxy photometry in order to study the build-up of galaxies on the
red-sequence, as parameterised by the dwarf-to-giant ratio (DGR). We find that
the DGR in clusters is higher than that of the field at all redshifts, implying
that the faint end of the red-sequence was established first in clusters. We
find that the DGR evolves with redshift for both samples, consistent with the
``down-sizing'' picture of star formation. We examine the predictions of
semi-analytic models for the DGR and find that neither the magnitude of its
environmental dependence nor its evolution is correctly predicted in the
models. Red-sequence DGRs are consistently too high in the models, the most
likely explanation being that the strangulation mechanism used to remove hot
gas from satellite galaxies is too efficient. Finally we present a simple toy
model including a threshold mass, below which galaxies are not strangled, and
show that this can predict the observed evolution of the field DGR.Comment: MNRAS letters accepted. 5 pages, 1 figur
Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters
(Abridged) Theoretical models that include only gravitationally-driven
processes fail to match the observed mean X-ray properties of clusters. As a
result, there has recently been increased interest in models in which either
radiative cooling or entropy injection play a central role in mediating the
properties of the intracluster medium. Both sets of models give reasonable fits
to the mean properties of clusters, but cooling only models result in fractions
of cold baryons in excess of observationally established limits and the
simplest entropy injection models do not treat the "cooling core" structure
present in many clusters and cannot account for entropy profiles revealed by
recent X-ray observations. We consider models that marry radiative cooling with
entropy injection, and confront model predictions for the global and structural
properties of massive clusters with the latest X-ray data. The models
successfully and simultaneously reproduce the observed L-T and L-M relations,
yield detailed entropy, surface brightness, and temperature profiles in
excellent agreement with observations, and predict a cooled gas fraction that
is consistent with observational constraints. The model also provides a
possible explanation for the significant intrinsic scatter present in the L-T
and L-M relations and provides a natural way of distinguishing between clusters
classically identified as "cooling flow" clusters and dynamically relaxed
"non-cooling flow" clusters. The former correspond to systems that had only
mild levels (< 300 keV cm^2) of entropy injection, while the latter are
identified as systems that had much higher entropy injection. This is borne out
by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical
Journa
Recommended from our members
Our changing Sun
Stellar astronomy tells us much about the long-term evolution of our Sun while forensic evidence (for example, cosmic-ray products in ice cores) gives us indications of its fluctuations over the last millennium. However, such studies do not give us a sufficiently detailed understanding of solar change over the last century to allow us to detect and quantify any role that the Sun might have played in the observed rise in average surface temperatures on Earth. This paper describes recent research that has filled this gap by applying advances in our understanding of the effects and structure of the solar wind to historical data on the Earth's magnetic field
- …