78 research outputs found

    Flaws in the methodologies for organic carbon analysis in seagrass blue carbon soils

    Get PDF
    The ability to accurately measure organic carbon (OC) in marine sediments or soils is overall taken for granted in scientific communities, yet this seemingly mundane task remains a methodological challenge when the soil matrix contains calcium carbonate (CaCO3), creating inaccuracies in Blue Carbon estimates. Here, we compared five common methods combining acidification, combustion, and wet oxidation pre-treatments for determination of OC in sediments and soils containing CaCO3 based on the analyses of artificial soil mixtures made of different OC and CaCO3 contents, and multiple soils from Australian seagrass cores. The results obtained showed that methods involving acidification pre-treatment entailed −17 ± 0.2% (mean ± SE) underestimation of OC content (ranging from −8% to −26%), whereas the combustion-based method was accurate for samples with high CaCO3 content but entailed 32–47% overestimation in samples with low CaCO3 content. The Heanes method (wet oxidation method) showed \u3c 5% deviation from the known OC content, but this method is not suitable for soil samples containing reduced iron, sulfur and potentially manganese compounds. The differences observed among methods have significant impacts on local, regional, and global Blue Carbon storage calculations. We provide key methodological guidelines for the analysis of OC in soils with high and low CaCO3 contents, aiming at improving accuracy in current Blue Carbon science

    EMAGE: a spatial database of gene expression patterns during mouse embryo development

    Get PDF
    EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods

    EMAGE: a spatial database of gene expression patterns during mouse embryo development

    Get PDF
    EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods

    EMAGE—Edinburgh Mouse Atlas of Gene Expression: 2008 update

    Get PDF
    EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a database of in situ gene expression patterns in the developing mouse embryo. Domains of expression from raw data images are spatially integrated into a set of standard 3D virtual mouse embryos at different stages of development, allowing data interrogation by spatial methods. Sites of expression are also described using an anatomy ontology and data can be queried using text-based methods. Here we describe recent enhancements to EMAGE which include advances in spatial search methods including: a refined local spatial similarity search algorithm, a method to allow global spatial comparison of patterns in EMAGE and subsequent hierarchical-clustering, and spatial searches across multiple stages of development. In addition, we have extended data access by the introduction of web services and new HTML-based search interfaces, which allow access to data that has not yet been spatially annotated. We have also started incorporating full 3D images of gene expression that have been generated using optical projection tomography (OPT)

    EMAGE mouse embryo spatial gene expression database: 2010 update

    Get PDF
    EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∌19 000 gene) ‘EURExpress’ dataset into EMAGE
    • 

    corecore