89 research outputs found

    Evaluating contribution of the cellular and humoral immune responses to the control of shedding of \u3cem\u3eMycobacterium avium\u3c/em\u3e spp. \u3cem\u3eparatuberculosis\u3c/em\u3e in cattle

    Get PDF
    Mycobacterium avium spp. paratuberculosis (MAP) causes a persistent infection and chronic inflammation of the gut in ruminants leading to bacterial shedding in feces in many infected animals. Although there are often strong MAP-specific immune responses in infected animals, immunological correlates of protection against progression to disease remain poorly defined. Analysis of cross-sectional data has suggested that the cellular immune response observed early in infection is effective at containing bacterial growth and shedding, in contrast to humoral immune responses. In this study, 20 MAP-infected calves were followed for nearly 5 years during which MAP shedding, antigen-specific cellular (LPT) and humoral (ELISA) immune responses were measured. We found that MAP-specific cellular immune response developed slowly, with the peak of the immune response occurring one year post infection. MAP-specific humoral immunity expanded only in a subset of animals. Only in a subset of animals there was a statistically significant negative correlation between the amount of MAP shedding and magnitude of the MAP-specific cellular immune response. Direct fitting of simple mechanistic mathematical models to the shedding data suggested that MAP-specific immune responses contributed significantly to the kinetics of MAP shedding in most animals. However, whereas the MAP-specific cellular immune response was predicted to suppress shedding in some animals, in other animals it was predicted to increase shedding. In contrast, MAP-specific humoral response was always predicted to increase shedding. Our results illustrate the use of mathematical methods to understand relationships between mycobacteria and immunity in vivo but also highlight problems with establishing cause-effect links from observational data

    The Effect of Mycobacterium avium Complex Infections on Routine Mycobacterium bovis Diagnostic Tests

    Get PDF
    Bovine tuberculosis (bTB) is diagnosed in naturally infected populations exposed to a wide variety of other pathogens. This study describes the cell-mediated immune responses of cattle exposed to Mycobacterium avium subspecies paratuberculosis (Map) and Mycobacterium avium subspecies avium with particular reference to routine antefmortem Mycobacterium bovis diagnostic tests. The IFN-γ released in response to stimulated blood was found to peak later in the Map-exposed group and was more sustained when compared to the Maa-exposed group. There was a very close correlation between the responses to the purified protein derivatives (PPD) used for stimulation (PPDa, PPDb, and PPDj) with PPDa and PPDj most closely correlated. On occasion, in the Map-infected cattle, PPDb-biased responses were seen compared to PPDa suggesting that some Map-infected cattle could be misclassified as M. bovis infected using this test with these reagents. This bias was not seen when PPDj was used. SICCT results were consistent with the respective infections and all calves would have been classed skin test negative

    Advancing the development and implementation of regional, national tuberculosis control programs in livestock in Africa, Asia, and Latin America

    Get PDF
    This research article was published by Frontiers in Veterinary Science in 2023Tuberculosis in livestock caused by members of the Mycobacterium tuberculosis (MTb) complex is a notifiable zoonotic animal disease (1), which has been eradicated or held to very low prevalence levels in many high-income economies. Successful campaigns were all build on a very strict test-and-slaughter strategy using the tuberculin PPD skin tests as diagnostic tool. However, tuberculosis in livestock remains endemic in most Low- and Middle-Income Countries (LMICs). This not only represents a threat to public health in those countries but also places a significant burden on their economies due to a negative impact on livestock productivity and the resources invested in healthcare, prevention, surveillance, and, when present, control and/or eradication programs. Moreover, tuberculosis in livestock affects a wide variety of species as well as breeds, raised in a wide variety of farming systems, in a broad range of different climates, thus ruling out a “one size fits all” approach for disease control. Since “traditional” test and cull programs are costly, very demanding on the livestock holder and may be ruled out as option for religious reasons, such programs must be tailored to ensure they are fit for purpose considering the respective socio-economic context in which they have to be implemented in each country

    Hydrophobic Mycobacterial Antigens Elicit Polyfunctional T Cells in Mycobacterium bovis Immunized Cattle:Association With Protection Against Challenge?

    Get PDF
    Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosisin vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted

    Access to Research Veterinary Medicine International Volume

    Get PDF
    Bovine tuberculosis (bTB) is diagnosed in naturally infected populations exposed to a wide variety of other pathogens. This study describes the cell-mediated immune responses of cattle exposed to Mycobacterium avium subspecies paratuberculosis (Map) and Mycobacterium avium subspecies avium with particular reference to routine antefmortem Mycobacterium bovis diagnostic tests. The IFN-γ released in response to stimulated blood was found to peak later in the Map-exposed group and was more sustained when compared to the Maa-exposed group. There was a very close correlation between the responses to the purified protein derivatives (PPD) used for stimulation (PPDa, PPDb, and PPDj) with PPDa and PPDj most closely correlated. On occasion, in the Map-infected cattle, PPDb-biased responses were seen compared to PPDa suggesting that some Map-infected cattle could be misclassified as M. bovis infected using this test with these reagents. This bias was not seen when PPDj was used. SICCT results were consistent with the respective infections and all calves would have been classed skin test negative

    Patient-Tailored Approach for Diagnostics and Treatment of Mycotic Abdominal Aortic Aneurysm

    Get PDF
    Background: The existing literature on mycotic aortic aneurysm is scarce and focuses on treatment. This study evaluates the clinical characteristics, diagnostics, treatment and outcome of patients with a mycotic abdominal aortic aneurysm treated in a tertiary referral center. Methods: A retrospective cohort study was conducted including all patients with a proven mycotic abdominal aortic aneurysm admitted between May 2010 and July 2020. Primary outcome was mortality and secondary outcome included complications such as vascular graft/endograft infection. Results: Twenty-four patients with a mycotic abdominal aortic aneurysm were included. Patients had a mean age of 68 +/- 9 years and 20 (83%) were male. Thirteen patients (57%) had positive preoperative blood cultures. Streptococcus pneumoniae was most frequently isolated by blood culturing, pus, and vascular, or perivascular tissue cultures (17%). In 19 (83%) patients the mycotic abdominal aortic aneurysm was located infrarenally, in three (13%) patients suprarenally, and in one (4%) patient juxtarenally. Median follow-up was 20 (7-42) months. In 8 patients (33%) vascular graft and or endograft infection was diagnosed after surgical repair. Ten (42%) patients died during the follow-up period. The main causes of death were vascular graft/endograft infection-related (n = 4) and rupture of the mycotic abdominal aortic aneurysm (n = 3). No patient characteristics could be identified as predictive for mortality. Conclusions: This study shows a large variation in presentation, diagnostic approaches, and surgical and antibiotic treatment of mycotic abdominal aortic aneurysm. The detailed information about the diagnostic approaches to this rare disease and its antibiotic and/or other treatment contributes to existing knowledge of mycotic abdominal aortic aneurysm. Because of the individual variation patients should be discussed in a multidisciplinary team with a vascular surgeon, infectious disease specialist, and clinical microbiologist

    Defined Antigen Skin Test for Bovine Tuberculosis Retains Specificity on Revaccination With Bacillus Calmette–Guérin

    Get PDF
    The Bacillus Calmette–Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described. The DST reliably identifies bTB-infected animals in experimental challenge models and in natural infection settings, and differentiated these from animals immunized with a single dose of BCG in both skin tests and interferon-gamma release assay (IGRA). The current investigation sought to assess the diagnostic specificity of DST in calves (Bos taurus ssp. taurus × B. t. ssp. indicus; n = 15) revaccinated with BCG 6 months after primary immunization. The results show that none of the 15 BCG-revaccinated calves exhibited a delayed hypersensitivity response when skin tested with DST 61 days post-revaccination, suggesting 100% diagnostic specificity (one-tailed lower 95% CI: 82). In contrast, 8 of 15 (diagnostic specificity = 47%; 95% CI: 21, 73) BCG-revaccinated calves were positive per the single cervical tuberculin (SCT) test using bovine tuberculin. Together, these results show that the DST retains its specificity even after revaccination with BCG and confirms the potential for implementation of BCG-based interventions in settings where test-and-slaughter are not economically or culturally feasible

    Urinary sulfate excretion and risk of late graft failure in renal transplant recipients - a prospective cohort study

    Get PDF
    Hydrogen sulfide (H2S), produced from metabolism of dietary sulfur-containing amino acids, is allegedly a renoprotective compound. Twenty-four-hour urinary sulfate excretion (USE) may reflect H2S bioavailability. We aimed to investigate the association of USE with graft failure in a large prospective cohort of renal transplant recipients (RTR). We included 704 stable RTR, recruited at least 1 year after transplantation. We applied log-rank testing and Cox regression analyses to study association of USE, measured from baseline 24 h urine samples, with graft failure. Median age was 55 [45–63] years (57% male, eGFR was 45 ± 19 ml/min/1.73 m2). Median USE was 17.1 [13.1–21.1] mmol/24 h. Over median follow-up of 5.3 [4.5–6.0] years, 84 RTR experienced graft failure. RTR in the lowest sex-specific tertile of USE experienced a higher rate of graft failure during follow-up than RTR in the middle and highest sex-specific tertiles (18%, 13%, and 5%, respectively, log-rank P < 0.001). In Cox regression analyses, USE was inversely associated with graft failure [HR per 10 mmol/24 h: 0.37 (0.24–0.55), P < 0.001]. The association remained independent of adjustment for potential confounders, including age, sex, eGFR, proteinuria, time between transplantation and baseline, BMI, smoking, and high sensitivity C-reactive protein [HR per 10 mmol/24 h: 0.51 (0.31–0.82), P = 0.01]. In conclusion, this study demonstrates a significant inverse association of USE with graft failure in RTR, suggesting high H2S bioavailability as a novel, potentially modifiable factor for prevention of graft failure in RTR

    Trajectories of renal biomarkers and new-onset heart failure in the general population:Findings from the PREVEND study

    Get PDF
    AIMS: Renal dysfunction is one of the most critical risk factors for developing heart failure (HF). However, the association between repeated measures of renal function and incident HF remains unclear. Therefore, this study investigated the longitudinal trajectories of urinary albumin excretion (UAE) and serum creatinine and their association with new-onset HF and all-cause mortality.METHODS AND RESULTS: Using group-based trajectory analysis, we estimated trajectories of UAE and serum creatinine in 6881 participants from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study and their association with new-onset HF and all-cause death during the 11-years of follow-up. Most participants had stable low UAE or serum creatinine. Participants with persistently higher UAE or serum creatinine were older, more often men, and more often had comorbidities, such as diabetes, a previous myocardial infarction or dyslipidaemia. Participants with persistently high UAE had a higher risk of new-onset HF or all-cause mortality, whereas stable serum creatinine trajectories showed a linear association for new-onset HF and no association with all-cause mortality.CONCLUSION: Our population-based study identified different but often stable longitudinal patterns of UAE and serum creatinine. Patients with persistently worse renal function, such as higher UAE or serum creatinine, were at a higher risk of HF or mortality.</p
    corecore