6 research outputs found
Fiber-Optic Strain Sensing (FOSS): Shape and Load Measurement Demonstration Tests
Presentation documenting tests performed to demonstrate shape and load measurement using fiber optic strain sensors (FOSS
NASA Johnson Space Center Aircraft Operations Division
This presentation provides a high-level overview of JSC aircraft and missions. The capabilities, including previous missions and support team, for the Super Guppy Transport (SGT) aircraft are highlighted
NASA Dryden: Flight Loads Lab Capabilities and Mass Properties Testing
This presentation covers the basic capabilities of the Dryden Flight Loads Lab. It also covers in detail the mass properties capabilities of the loads lab, focusing on the recent mass properties testing of the X-48B, and the recent tests of the Dynamic Inertia Measurement method (DIMM). Presentation focuses on the test methods and issues discovered during the mass properties testing of the X-48B leading to the requirement of new instrumentation on all conventional mass properties testing. Presentation also focuses on development of DIMM for replacement of conventional mass properties tests
Cryogenic Liquid Level Sensor Apparatus and Method
The invention proposed herein is a system and method for measuring the liquid level in a container that employs an optic fiber sensor which is heated using a simple power source and a wire and making an anemometry measurement. The heater wire is cycled between two levels of heat and the liquid level is obtained by measuring the heat transfer characteristics of the surrounding environment
Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test
A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are include