13 research outputs found

    Optical characterization of Polar winter aerosols and clouds

    Get PDF
    The Arctic region is particularly sensitive to climate change and has recently undergone major alterations including a dramatic decrease of sea-ice extent. Our ability to model and potentially mitigate climate change is limited, in part, by the uncertainties associated with radiative forcing due to direct and indirect aerosol effects which in turn are dependent on our understanding of aerosol and cloud processes. Aerosol loading can be characterized by aerosol optical depth (AOD) which is the most important (extensive or bulk) aerosol radiative parameter and arguably the most important regional indicator of aerosol behavior. One of the most important shortcomings in our understanding of Arctic aerosols is their behavior during the Polar winter. A major reason for this is the lack of night-time AOD measurements. In this work we use lidar and starphotometry instruments in the Arctic to obtain vertically resolved aerosol profiles and column in- tegrated representations of those profiles (AODs) respectively. In addition, data from a space-borne lidar (CALIOP) is used to provide a pan-Arctic context and seasonal statistics in support of ground based measurements

    Characterisation of night-time aerosols using starphotometry

    Get PDF
    This is a study concerning the use of starphotometry to retrieve night-time aerosol optical depths (AODs). In the summer of 2007 a SPSTAR03 starphotometer was installed at a rural site at Egbert, Ontario for the purpose of the nighttime AOD measurements. Two series of daytime / nighttime AODs were acquired using the CIMEL CE 318 sunphotometer and the SPSTAR03 from Aug. 31 to Sept. 19 2007 and from June 30 to July 5, 2008. The measurements were complemented by vertical backscatter coefficient profiles acquired using a pulsed lidar. We found that starphotometer AOD estimates, based on the application of a two star method (TSM) to low and high elevation stars, are susceptible to atmospheric inhomogeneity effects. Starphotometer AOD estimates based on the one star method (OSM) reduce this sensitivity, but require absolute calibration values. A level of continuity was obtained between the daytime sunphotometry and nighttime starphotometry data. A continuity parameter (defined as the average difference between the measured nighttime and interpolated daytime values) was calculated over four distinct periods. It yielded the differences of 0.160, 0.053, 0.139 (total, fine and coarse mode optical depths) for the low star and 0.195, 0.070, 0.149 for the high star. We argue that cloud screening would have reduced the continuity parameter differences for the coarse and total optical depths. For 5 out of , 8 nights of lidar operation, a combination of the Angstrom and Spectral Deconvolution Algorithm (SDA) analysis provided an indication of the nature of the atmospheric features seen in the lidar data. Fine and coarse-mode events were detected during the measurement periods using the SDA. Lidar data was used to better understand complex atmospheric phenomena and was found especially effective for cloud detection and general signal increase/decrease analysis

    La caracteĢrisation optique des aeĢrosols et des nuages pendant lā€™hiver polaire

    No full text
    RĆ©sumĆ© : Lā€™Arctique est particuliĆØrement sensible aux changements climatiques et a rĆ©cemment subi des modifications majeures incluant une diminution dramatique de lā€™extension de la glace de mer. Notre capacitĆ©Ģ aĢ€ modĆ©liser et aĢ€ potentiellement rĆ©duire les changements climatiques est limitĆ©e, en partie, par les incertitudes associeĢes au forcĢ§age radiatif induit par les effets directs et indirects des aeĢrosols, qui deĢpendent de notre compreĢhension des processus impliquant les nuages et les aeĢrosols. La charge des aeĢrosols est caracteĢriseĢe par lā€™eĢpaisseur optique des aeĢrosols (AOD) qui est le parameĢ€tre radiatif extensif le plus important et lā€™indicateur reĢgional du comportement des aeĢrosols sans doute le plus deĢcisif. Une de nos lacunes majeures dans la compreĢhension des aeĢrosols arctiques est leur comportement durant lā€™hiver polaire. Cela est principalement duĢ‚ au manque de mesures nocturnes dā€™AOD. Dans ce travail, on utilise des instruments (lidar et photomeĢ€tre stellaire) installeĢs en Arctique pour mesurer, respectivement, les profils verticaux des aeĢrosols et une valeur inteĢgreĢe dans la colonne (AOD) de ces profils. En outre, les donneĢes dā€™un lidar spatial (CALIOP) sont utiliseĢes pour fournir un contexte pan-arctique et des statistiques saisonnieĢ€res pour supporter les mesures au sol. Ces dernieĢ€res ont eĢteĢ obtenues aux stations arctiques dā€™Eureka (80ā—¦ N, 86ā—¦ W) et de Ny AĢŠlesund (79ā—¦ N, 12ā—¦ E) durant les hivers polaires de 2010-2011 et 2011-2012. Lā€™importance physique des pe- tites variations dā€™amplitude de lā€™AOD est typique de lā€™hiver polaire en Arctique, mais suppose une veĢrification pour sā€™assurer que des artefacts ne contribuent pas aĢ€ ces variations (par exemple un masque de nuage insuffisant). Une analyse des processus baseĢe sur des eĢveĢnements (avec une reĢsolution temporelle ā‰ˆ une minute) est essentielle pour sā€™assurer que les parameĢ€tres optiques et microphysiques extensifs (grossiers) et intensifs (par particules) sont coheĢrents et physiquement conformes. La synergie photomĆØtre stellaire-lidar nous permet de caracteĢriser plusieurs eĢveĢnements distincts au cours des peĢriodes de mesures, en particulier : des aeĢrosols, des cristaux de glace, des nuages fins et des nuages polaires stratospheĢriques (PSC). Dans lā€™ensemble, les modes fin (1Ī¼m) de lā€™AOD obtenus par photomeĢtrie stellaire (Ļ„[indice infĆ©rieur f] et Ļ„[indice infĆ©rieur c]) sont coheĢrents avec leurs analogues produits aĢ€ partir des profils inteĢgreĢs du lidar. Cependant certaines inconsistances causeĢes par des facteurs instrumentaux et environnementaux ont aussi eĢteĢ trouveĢes. La division de lā€™AOD du photomeĢ€tre stellaire Ļ„[indice infĆ©rieur f] et Ļ„[indice infĆ©rieur c] a eĢteĢ davantage exploiteĢe afin dā€™eĢliminer les eĢpaisseurs optiques du mode grossier (le filtrage spectral de nuages) et, par la suite, de comparer Ļ„[indice infĆ©rieur]f avec les AODs obtenues par le filtrage de nuages traditionnel (temporel). Alors que les filtrages temporel et spectral des nuages des cas eĢtudieĢs au niveau des processus ont conduit aĢ€ des reĢsultats bons aĢ€ modeĢreĢs en termes de coheĢrence entre les donneĢes filtreĢes spectralement et temporellement (les eĢpaisseurs optiques des photomeĢ€tres stellaires et lidars eĢtant toutes deux filtreĢes temporellement), les reĢsultats saisonniers semblent eĢ‚tre encore contamineĢs par les nuages. En imposant un accord en utilisant un second filtre, plus restrictif, avec un criteĢ€re de ciel clair ("enveloppe minimale du nuage"), les valeurs saisonnieĢ€res moyennes obtenues eĢtaient de 0.08 aĢ€ Eureka et 0.04 aĢ€ Ny AĢŠlesund durant lā€™hiver 2010-2011. En 2011-2012, ces valeurs eĢtaient, respectivement, de 0.12 et 0.09. En revanche les valeurs dā€™eĢpaisseur optique de CALIOP (estimeĢes entre 0 et 8 km) ont leĢgeĢ€rement diminueĢ de 2010-2011 aĢ€ 2011-2012 (0.04 vs. 0.03). // Abstract : The Arctic region is particularly sensitive to climate change and has recently undergone major alterations including a dramatic decrease of sea-ice extent. Our ability to model and potentially mitigate climate change is limited, in part, by the uncertainties associated with radiative forcing due to direct and indirect aerosol effects which in turn are dependent on our understanding of aerosol and cloud processes. Aerosol loading can be characterized by aerosol optical depth (AOD) which is the most important (extensive or bulk) aerosol radiative parameter and arguably the most important regional indicator of aerosol behavior. One of the most important shortcomings in our understanding of Arctic aerosols is their behavior during the Polar winter. A major reason for this is the lack of night-time AOD measurements. In this work we use lidar and starphotometry instruments in the Arctic to obtain vertically resolved aerosol profiles and column integrated representations of those profiles (AODs) respectively. In addition, data from a space-borne lidar (CALIOP) is used to provide a pan-Arctic context and seasonal statistics in support of ground based measurements. The latter were obtained at the Eureka (80 ā—¦ N, 86 ā—¦ W) and Ny ƅlesund (79 ā—¦ N, 12 ā—¦ E) high Arctic stations during the Polar Winters of 2010-11 and 2011-12. The physical significance of the variation of the small-amplitude AODs that are typical of the Arctic Polar Winter, requires verification to ensure that artifactual contributions (such as incomplete cloud screening) do not contribute to these variations. A process-level event-based analysis (with a time resolution of ā‰ˆ minutes), is essential to ensure that extracted extensive (bulk) and intensive (per particle) optical and microphysical indicators are coherent and physically consistent. Using the starphotometry-lidar synergy we characterized several distinct events throughout the measurement period: these included aerosol, ice crystal, thin cloud and polar stratospheric cloud (PSC) events. In general fine (1 Ī¼m )modeAODs from starphotometry ( Ļ„[subscript f] and Ļ„ [subscript c] ) were coherent with their lidar analogues produced from integrated profiles : however several inconsistencies related to instrumental and environmental factors were also found. The division of starphotometer AODs into Ļ„[subscript ]f and Ļ„ [subscript c] components was further exploited to eliminate coarse mode cloud optical depths (spectral cloud screening) and subsequently compare Ļ„ [subscript f] with cloud-screened AODs using a traditional (temporal based) approach. While temporal and spectral cloud screening case studies at process level resolutions yielded good to moderate results in terms of the coherence between spectrally and temporally cloud screened data (both temporally screened starphotometer and lidar optical depths), seasonal results apparently still contained cloud contaminated data. Forcing an agreement using a more restrictive, second-pass, clear sky criterion ("minimal cloud envelope") produced mean 2010-11 AOD seasonal values of 0.08 and 0.04 for Eureka and Ny ƅlesund respectively. In 2011-12 these values were 0.12 and 0.09. Conversely, CALIOP AODs (0 to 8 km) for the high Arctic showed a slight decrease from 2010-2011 to 2011-2012 (0.04 vs 0.03)

    Optische Charakterisierung von polaren Winteraerosolen und Wolken

    No full text
    The Arctic region is particularly sensitive to climate change and has recently undergone major alterations including a dramatic decrease of sea-ice extent. Our ability to model and potentially mitigate climate change is limited, in part, by the uncertainties associated with radiative forcing due to direct and indirect aerosol effects which in turn are dependent on our understanding of aerosol and cloud processes. Aerosol loading can be characterized by aerosol optical depth (AOD) which is the most important (extensive or bulk) aerosol radiative parameter and arguably the most important regional indicator of aerosol behavior. One of the most important shortcomings in our understanding of Arctic aerosols is their behavior during the Polar winter. A major reason for this is the lack of night-time AOD measurements. In this work we use lidar and starphotometry instruments in the Arctic to obtain vertically resolved aerosol profiles and column in- tegrated representations of those profiles (AODs) respectively. In addition, data from a space-borne lidar (CALIOP) is used to provide a pan-Arctic context and seasonal statistics in support of ground based measurements

    Characterisation of night-time aerosols using starphotometry

    No full text
    This is a study concerning the use of starphotometry to retrieve night-time aerosol optical depths (AODs). In the summer of 2007 a SPSTAR03 starphotometer was installed at a rural site at Egbert, Ontario for the purpose of the nighttime AOD measurements. Two series of daytime / nighttime AODs were acquired using the CIMEL CE 318 sunphotometer and the SPSTAR03 from Aug. 31 to Sept. 19 2007 and from June 30 to July 5, 2008. The measurements were complemented by vertical backscatter coefficient profiles acquired using a pulsed lidar. We found that starphotometer AOD estimates, based on the application of a two star method (TSM) to low and high elevation stars, are susceptible to atmospheric inhomogeneity effects. Starphotometer AOD estimates based on the one star method (OSM) reduce this sensitivity, but require absolute calibration values. A level of continuity was obtained between the daytime sunphotometry and nighttime starphotometry data. A continuity parameter (defined as the average difference between the measured nighttime and interpolated daytime values) was calculated over four distinct periods. It yielded the differences of 0.160, 0.053, 0.139 (total, fine and coarse mode optical depths) for the low star and 0.195, 0.070, 0.149 for the high star. We argue that cloud screening would have reduced the continuity parameter differences for the coarse and total optical depths. For 5 out of , 8 nights of lidar operation, a combination of the Angstrom and Spectral Deconvolution Algorithm (SDA) analysis provided an indication of the nature of the atmospheric features seen in the lidar data. Fine and coarse-mode events were detected during the measurement periods using the SDA. Lidar data was used to better understand complex atmospheric phenomena and was found especially effective for cloud detection and general signal increase/decrease analysis

    La caracteĢrisation optique des aeĢrosols et des nuages pendant lā€™hiver polaire

    No full text
    RĆ©sumĆ© : Lā€™Arctique est particuliĆØrement sensible aux changements climatiques et a rĆ©cemment subi des modifications majeures incluant une diminution dramatique de lā€™extension de la glace de mer. Notre capacitĆ©Ģ aĢ€ modĆ©liser et aĢ€ potentiellement rĆ©duire les changements climatiques est limitĆ©e, en partie, par les incertitudes associeĢes au forcĢ§age radiatif induit par les effets directs et indirects des aeĢrosols, qui deĢpendent de notre compreĢhension des processus impliquant les nuages et les aeĢrosols. La charge des aeĢrosols est caracteĢriseĢe par lā€™eĢpaisseur optique des aeĢrosols (AOD) qui est le parameĢ€tre radiatif extensif le plus important et lā€™indicateur reĢgional du comportement des aeĢrosols sans doute le plus deĢcisif. Une de nos lacunes majeures dans la compreĢhension des aeĢrosols arctiques est leur comportement durant lā€™hiver polaire. Cela est principalement duĢ‚ au manque de mesures nocturnes dā€™AOD. Dans ce travail, on utilise des instruments (lidar et photomeĢ€tre stellaire) installeĢs en Arctique pour mesurer, respectivement, les profils verticaux des aeĢrosols et une valeur inteĢgreĢe dans la colonne (AOD) de ces profils. En outre, les donneĢes dā€™un lidar spatial (CALIOP) sont utiliseĢes pour fournir un contexte pan-arctique et des statistiques saisonnieĢ€res pour supporter les mesures au sol. Ces dernieĢ€res ont eĢteĢ obtenues aux stations arctiques dā€™Eureka (80ā—¦ N, 86ā—¦ W) et de Ny AĢŠlesund (79ā—¦ N, 12ā—¦ E) durant les hivers polaires de 2010-2011 et 2011-2012. Lā€™importance physique des pe- tites variations dā€™amplitude de lā€™AOD est typique de lā€™hiver polaire en Arctique, mais suppose une veĢrification pour sā€™assurer que des artefacts ne contribuent pas aĢ€ ces variations (par exemple un masque de nuage insuffisant). Une analyse des processus baseĢe sur des eĢveĢnements (avec une reĢsolution temporelle ā‰ˆ une minute) est essentielle pour sā€™assurer que les parameĢ€tres optiques et microphysiques extensifs (grossiers) et intensifs (par particules) sont coheĢrents et physiquement conformes. La synergie photomĆØtre stellaire-lidar nous permet de caracteĢriser plusieurs eĢveĢnements distincts au cours des peĢriodes de mesures, en particulier : des aeĢrosols, des cristaux de glace, des nuages fins et des nuages polaires stratospheĢriques (PSC). Dans lā€™ensemble, les modes fin (1Ī¼m) de lā€™AOD obtenus par photomeĢtrie stellaire (Ļ„[indice infĆ©rieur f] et Ļ„[indice infĆ©rieur c]) sont coheĢrents avec leurs analogues produits aĢ€ partir des profils inteĢgreĢs du lidar. Cependant certaines inconsistances causeĢes par des facteurs instrumentaux et environnementaux ont aussi eĢteĢ trouveĢes. La division de lā€™AOD du photomeĢ€tre stellaire Ļ„[indice infĆ©rieur f] et Ļ„[indice infĆ©rieur c] a eĢteĢ davantage exploiteĢe afin dā€™eĢliminer les eĢpaisseurs optiques du mode grossier (le filtrage spectral de nuages) et, par la suite, de comparer Ļ„[indice infĆ©rieur]f avec les AODs obtenues par le filtrage de nuages traditionnel (temporel). Alors que les filtrages temporel et spectral des nuages des cas eĢtudieĢs au niveau des processus ont conduit aĢ€ des reĢsultats bons aĢ€ modeĢreĢs en termes de coheĢrence entre les donneĢes filtreĢes spectralement et temporellement (les eĢpaisseurs optiques des photomeĢ€tres stellaires et lidars eĢtant toutes deux filtreĢes temporellement), les reĢsultats saisonniers semblent eĢ‚tre encore contamineĢs par les nuages. En imposant un accord en utilisant un second filtre, plus restrictif, avec un criteĢ€re de ciel clair ("enveloppe minimale du nuage"), les valeurs saisonnieĢ€res moyennes obtenues eĢtaient de 0.08 aĢ€ Eureka et 0.04 aĢ€ Ny AĢŠlesund durant lā€™hiver 2010-2011. En 2011-2012, ces valeurs eĢtaient, respectivement, de 0.12 et 0.09. En revanche les valeurs dā€™eĢpaisseur optique de CALIOP (estimeĢes entre 0 et 8 km) ont leĢgeĢ€rement diminueĢ de 2010-2011 aĢ€ 2011-2012 (0.04 vs. 0.03). // Abstract : The Arctic region is particularly sensitive to climate change and has recently undergone major alterations including a dramatic decrease of sea-ice extent. Our ability to model and potentially mitigate climate change is limited, in part, by the uncertainties associated with radiative forcing due to direct and indirect aerosol effects which in turn are dependent on our understanding of aerosol and cloud processes. Aerosol loading can be characterized by aerosol optical depth (AOD) which is the most important (extensive or bulk) aerosol radiative parameter and arguably the most important regional indicator of aerosol behavior. One of the most important shortcomings in our understanding of Arctic aerosols is their behavior during the Polar winter. A major reason for this is the lack of night-time AOD measurements. In this work we use lidar and starphotometry instruments in the Arctic to obtain vertically resolved aerosol profiles and column integrated representations of those profiles (AODs) respectively. In addition, data from a space-borne lidar (CALIOP) is used to provide a pan-Arctic context and seasonal statistics in support of ground based measurements. The latter were obtained at the Eureka (80 ā—¦ N, 86 ā—¦ W) and Ny ƅlesund (79 ā—¦ N, 12 ā—¦ E) high Arctic stations during the Polar Winters of 2010-11 and 2011-12. The physical significance of the variation of the small-amplitude AODs that are typical of the Arctic Polar Winter, requires verification to ensure that artifactual contributions (such as incomplete cloud screening) do not contribute to these variations. A process-level event-based analysis (with a time resolution of ā‰ˆ minutes), is essential to ensure that extracted extensive (bulk) and intensive (per particle) optical and microphysical indicators are coherent and physically consistent. Using the starphotometry-lidar synergy we characterized several distinct events throughout the measurement period: these included aerosol, ice crystal, thin cloud and polar stratospheric cloud (PSC) events. In general fine (1 Ī¼m )modeAODs from starphotometry ( Ļ„[subscript f] and Ļ„ [subscript c] ) were coherent with their lidar analogues produced from integrated profiles : however several inconsistencies related to instrumental and environmental factors were also found. The division of starphotometer AODs into Ļ„[subscript ]f and Ļ„ [subscript c] components was further exploited to eliminate coarse mode cloud optical depths (spectral cloud screening) and subsequently compare Ļ„ [subscript f] with cloud-screened AODs using a traditional (temporal based) approach. While temporal and spectral cloud screening case studies at process level resolutions yielded good to moderate results in terms of the coherence between spectrally and temporally cloud screened data (both temporally screened starphotometer and lidar optical depths), seasonal results apparently still contained cloud contaminated data. Forcing an agreement using a more restrictive, second-pass, clear sky criterion ("minimal cloud envelope") produced mean 2010-11 AOD seasonal values of 0.08 and 0.04 for Eureka and Ny ƅlesund respectively. In 2011-12 these values were 0.12 and 0.09. Conversely, CALIOP AODs (0 to 8 km) for the high Arctic showed a slight decrease from 2010-2011 to 2011-2012 (0.04 vs 0.03)

    Retrievals of ice-water content from an airborne elastic lidar in tropical convective clouds

    No full text
    Ice water content (IWC) is one of the critical parameters in determining the cloud radiative impact. In this work lidar-based IWC retrievals obtained in tropical mesoscale convective systems are evaluated in the context of an extensive in-situ and remote sensing instrumentation suite. Based on a test case of May 27, 2015 lidar-derived IWC values at 50 m above the aircraft were on average within 25% of the in-situ IWC measurements obtained using an isokinetic probe

    Retrievals of ice-water content from an airborne elastic lidar in tropical convective clouds

    No full text
    Ice water content (IWC) is one of the critical parameters in determining the cloud radiative impact. In this work lidar-based IWC retrievals obtained in tropical mesoscale convective systems are evaluated in the context of an extensive in-situ and remote sensing instrumentation suite. Based on a test case of May 27, 2015 lidar-derived IWC values at 50 m above the aircraft were on average within 25% of the in-situ IWC measurements obtained using an isokinetic probe

    Synchronized Starphotometry and Lidar measurements in the High Arctic

    Get PDF
    The sunphotometry-lidar synergy has proven to be effective for the characterization of aerosol events in the High Arctic. Sunphotometry measurements, however, are limited to the day-time periods. Starphotometry, based on the extinction of bright-star radiation, can mitigate the lack of aerosol optical depth (AOD) measurements during the Polar Night. In this work we present several examples of the coincident starphotometry-lidar measurements at Eureka, Canada (79Ā°59'N, 85Ā°56'W) obtained in Feb-Mar 2011. We show a correlation between fine (sub-micron) and coarse (super-micron) mode AOD dynamics from starphotometry and the backscatter profiles and depolarization ratio values from the lidar data
    corecore