16 research outputs found

    Comparative genomics of the sperm mitochondria-associated cysteine-rich protein gene

    Get PDF
    AbstractThe sperm mitochondrial cysteine-rich protein (SMCP) is a rapidly evolving cysteine- and proline-rich protein that is localized in the mitochondrial capsule and enhances sperm motility. The sequences of the SMCP protein, gene, and mRNA in a variety of mammals have been compared to understand their evolution and regulation. SMCP can now be reliably identified by its tripartite structure including a short amino-terminal segment; a central segment containing short tandem repeats rich in cysteine, proline, glutamine, and lysine; and a C-terminal segment containing no repeats, few cysteines, and a C-terminal lysine. The SMCP gene is located in the epidermal differentiation complex (EDC), a large gene cluster that functions in forming epithelial barriers. Similarities in chromosomal location, molecular function, intron–exon structure, and protein organization argue that SMCP originated from an EDC gene and acquired spermatogenic cell-specific transcriptional and translational regulation and a novel cellular function in sperm motility. The SMCP 5′ UTR and 3′ UTR contain conserved elements and uORFs that may function in cytoplasmic regulation of gene expression, and the levels of SMCP mRNA in human are much lower than in other mammals, a feature of male-biased expression. The evolution of SMCP has been accompanied by changes in the sequence, number, and length of repeat units, including three alleles in dogs. The major proteins associated with the mitochondrial capsule, SMCP and phospholipid hydroperoxide glutathione peroxidase, provide outstanding examples of changes in cellular function driven by selective pressures on sperm motility, an important determinant of male reproductive success

    Constitutively active ALK2 receptor mutants require type II receptor cooperation.

    No full text
    Constitutively activating mutations in receptor kinases recruit downstream effector pathways independently of upstream signaling, with consequences ranging from developmental syndromes to cancer. Classic fibrodysplasia ossificans progressiva (FOP) is a congenital syndrome resulting from highly conserved activating mutations of the glycine-serine-rich (GS) regulatory domain of ACVR1, encoding bone morphogenetic protein (BMP) type I receptor ALK2, which lead to inappropriate signaling and heterotopic ossification of soft tissues. It is unclear if constitutively active mutant ALK2 receptors (caALK2) can function independently of signaling complexes with type II receptors and ligands. We found that ablation of BmpRII and ActRIIa abrogated BMP ligand-mediated and caALK2-mediated signaling and transcription in cells and disrupted caALK2-induced heterotopic ossification in mice. Signaling via GS domain ALK2 mutants could be restored by the expression of either BMP type II receptor. The contribution of BMP type II receptors was independent of their ligand-binding or kinase function but was dependent upon an intact cytoplasmic domain. These data demonstrate that GS domain ALK2 mutants act independently of upstream signaling but may require a nonenzymatic scaffolding function provided by type II receptors to form functional, apparently ligand-independent signaling complexes. These findings define the minimal requirements for signaling of GS domain ALK2 mutants, with implications for the therapeutic targeting of their activity in disease

    Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification

    No full text
    Fibrodysplasia ossificans progressiva (FOP), a congenital heterotopic ossification (HO) syndrome caused by gain-of-function mutations of bone morphogenetic protein (BMP) type I receptor ACVR1, manifests with progressive ossification of skeletal muscles, tendons, ligaments, and joints. In this disease, HO can occur in discrete flares, often triggered by injury or inflammation, or may progress incrementally without identified triggers. Mice harboring an Acvr1(R206H) knock-in allele recapitulate the phenotypic spectrum of FOP, including injury-responsive intramuscular HO and spontaneous articular, tendon, and ligament ossification. The cells that drive HO in these diverse tissues can be compartmentalized into two lineages: an Scx(+) tendon-derived progenitor that mediates endochondral HO of ligaments and joints without exogenous injury, and a muscle-resident interstitial Mx1(+) population that mediates intramuscular, injury-dependent endochondral HO. Expression of Acvr1(R206H) in either lineage confers aberrant gain of BMP signaling and chondrogenic differentiation in response to activin A and gives rise to mutation-expressing hypertrophic chondrocytes in HO lesions. Compared to Acvr1(R206H), expression of the man-made, ligand-independent ACVR1(Q207D) mutation accelerates and increases the penetrance of all observed phenotypes, but does not abrogate the need for antecedent injury in muscle HO, demonstrating the need for an injury factor in addition to enhanced BMP signaling. Both injury-dependent intramuscular and spontaneous ligament HO in Acvr(1R206H) knock-in mice were effectively controlled by the selective ACVR1 inhibitor LDN-212854. Thus, diverse phenotypes of HO found in FOP are rooted in cell-autonomous effects of dysregulated ACVR1 signaling in nonoverlapping tissue-resident progenitor pools that may be addressed by systemic therapy or by modulating injury-mediated factors involved in their local recruitment

    Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva

    No full text
    Currently, no effective therapies exist for fibrodysplasia ossificans progressiva (FOP), a rare congenital syndrome in which heterotopic bone is formed in soft tissues owing to dysregulated activity of the bone morphogenetic protein (BMP) receptor kinase ALK2 (also known as ACVR1). From a screen of known biologically active compounds, we identified saracatinib as a potent ALK2 kinase inhibitor. In enzymatic and cell-based assays, saracatinib preferentially inhibited ALK2, compared with other receptors of the BMP/TGF-β signaling pathway, and induced dorsalization in zebrafish embryos consistent with BMP antagonism. We further tested the efficacy of saracatinib using an inducible ACVR1Q207D-transgenic mouse line, which provides a model of heterotopic ossification (HO), as well as an inducible ACVR1R206H-knockin mouse, which serves as a genetically and physiologically faithful FOP model. In both models, saracatinib was well tolerated and potently inhibited the development of HO, even when administered transiently following soft tissue injury. Together, these data suggest that saracatinib is an efficacious clinical candidate for repositioning in FOP treatment, offering an accelerated path to clinical proof-of-efficacy studies and potentially significant benefits to individuals with this devastating condition
    corecore