3 research outputs found

    Effect of Chlorhexidine Digluconate on Oral Bacteria Adhesion to Surfaces of Orthodontic Appliance Alloys

    No full text
    This study aimed to analyse the effect of chlorhexidine digluconate (CHX DG) mouthwash on the adhesion of oral bacteria to orthodontic appliances. The interactions of four bacteria (S. mutans, A. actinomycetemcomitans, S. oralis, and V. parvula) with two alloys (stainless steel [SS] and nickel-titanium [NiTi]) and three CHX DG solutions (commercial products Curasept and Perio Plus, and pure CHX DG, all with 0.12% active substance) were tested. The adhesive effect on the orthodontic wires was evaluated after 24 h for S. oralis and after 72 h for the other bacteria. The minimum bactericidal concentration of the solution for each bacterial strain was determined using the dilution method to test the antibacterial action. Salivary-pretreated orthodontic archwires were exposed to minimal bactericidal concentrations of solution and bacteria. Commercial antiseptic products, especially Perio Plus, showed a better inhibition of bacterial adhesion to both alloys than pure CHX DG solution (p < 0.05). A. actinomycetemcomitans was most inhibited in the adhesion of all bacteria by the CHX DG products. A greater inhibition of streptococci adherence was observed on SS, while that of A. actinomycetemcomitans was observed on NiTi. V. parvula inhibition was product-dependent. Although there were differences between the strains and the tested agents, it can be concluded that Perio Plus most effectively inhibited the adhesion of all tested bacteria to the SS and NiTi alloys. A. actinomycetemcomitans was most sensitive to all tested agents, while S. mutans showed the highest resistance. The effectiveness of the tested agents was better on NiTi alloys

    Supragingival dental biofilm profile and biofilm control during orthodontic treatment with fixed orthodontic appliance: A randomized controlled trial

    No full text
    Objective: The effectiveness of supragingival dental biofilm control during orthodontic treatment and changes in the bacterial profile were analyzed. Design: Sixty-four participants aged 12–22 years (57% female) were included in the study. Participants underwent orthodontic treatment with fixed appliances and were randomly assigned to one of the three groups, which during a period of one month: (I) used chlorhexidine digluconate (CHX), (II) used high concentration of fluoride (F) gel and (III) performed standard oral hygiene. The plaque and gingivitis index, pH of biofilm and white spot lesions (WSL) were assessed. Changes of the bacteria in the biofilm were analyzed by the quantitative polymerase chain reaction Results: Increase in the plaque index, pH of biofilm, and WSL was observed during orthodontic treatment with standard oral hygiene. Large interindividual variability was present, and the effects of one-month use of fluorides and CHX on clinical parameters were not significant. Despite standard hygiene the abundance of studied biofilm bacteria increased - the most Streptoccocus mutans (14.2x) and S. salivarius (3.3x), moderate Veillonella parvula (3x) and the least S. sobrinus (2.3x) and Agregatibacter actinomycetemcomitans (1.9x). The use of CHX reduced S. sobrinus (2.2x) and A. actinomycetemcomitans (1.9x). Fluoride use reduced A. actinomycetemcomitans (1.3x) and S. sobrinus (1.2x). Fluorides better controlled S. mutans than CHX. Conclusion: Bacterial biomass in supragingival biofilm increased during treatment with metal orthodontic appliances, with greater increase in cariogenic bacteria than periopathogens. Fluoride controlled S. mutans, while CHX S. sobrinus and A. actinomycetemcomitans
    corecore