77 research outputs found

    A novel application of remote sensing for modelling impacts of tree shading on water quality

    Get PDF
    Uncertainty in capturing the effects of riparian tree shade for assessment of algal growth rates and water temperature hinders the predictive capability of models applied for river basin management. Using photogrammetry-derived tree canopy data, we quantified hourly shade along the River Thames (UK) and used it to estimate the reduction in the amount of direct radiation reaching the water surface. In addition we tested the suitability of freely-available LIDAR data to map ground elevation. Following removal of buildings and objects other than trees from the LIDAR dataset, results revealed considerable differences between photogrammetry- and LIDAR-derived methods in variables including mean canopy height (10.5 m and 4.0 m respectively), percentage occupancy of riparian zones by trees (45% and 16% respectively) and mid-summer fractional penetration of direct radiation (65% and 76% respectively). The generated data on daily direct radiation for 2010 were used as input to a river network water quality model (QUESTOR). Impacts of tree shading were assessed in terms of upper quartile levels, revealing substantial differences in indicators such as biochemical oxygen demand (BOD) (1.58–2.19 mg L−1 respectively) and water temperature (20.1 and 21.2 °C respectively) between ‘shaded’ and ‘non-shaded’ radiation inputs. Whilst the differences in canopy height and extent derived by the two methods are appreciable they only make small differences to water quality in the Thames. However such differences may prove more critical in smaller rivers. We highlight the importance of accurate estimation of shading in water quality modelling and recommend use of high resolution remotely sensed spatial data to characterise riparian canopies. Our paper illustrates how it is now possible to make better reach scale estimates of shade and make aggregations of these for use at river basin scale. This will allow provision of more effective guidance for riparian management programmes than currently possible. This is important to support adaptation to future warming and maintenance of water quality standards

    Intense summer floods may induce prolonged increases in benthic respiration rates of more than one year leading to low river dissolved oxygen

    Get PDF
    The supply of readily-degradable organic matter to river systems can cause stress to dissolved oxygen (DO) in slow-flowing waterbodies. To explore this threat, a multi-disciplinary study of the River Thames (UK) was undertaken over a six-year period (2009–14). Using a combination of observations at various time resolutions (monthly to hourly), physics-based river network water quality modelling (QUESTOR) and an analytical tool to estimate metabolic regime (Delta method), a decrease in 10th percentile DO concentration (10-DO, indicative of summer low levels) was identified during the study period. The assessment tools suggested this decrease in 10-DO was due to an increase in benthic heterotrophic respiration. Hydrological and dissolved organic carbon (DOC) data showed that the shift in 10-DO could be attributed to summer flooding in 2012 and consequent connection of pathways flushing degradable organic matter into the river. Comparing 2009–10 and 2013–14 periods, 10-DO decreased by 7.0% at the basin outlet (Windsor) whilst median DOC concentrations in a survey of upstream waterbodies increased by 5.5–48.1%. In this context, an anomalous opposing trend in 10-DO at one site on the river was also identified and discussed. Currently, a lack of process understanding of spatio-temporal variability in benthic respiration rates is hampering model predictions of river DO. The results presented here show how climatic-driven variation and urbanisation induce persistent medium-term changes in the vulnerability of water quality to multiple stressors across complex catchment systems

    Making waves: effluent to estuary: does sunshine or shade reduce downstream footprints of cities?

    Get PDF
    Riparian tree canopies are key components of river systems, and influence the provision of many essential ecosystem services. Their management provides the potential for substantial control of the downstream persistence of pollutants. The recent advent of new advances in mass spectrometry to detect a large suite of emerging contaminants, high-frequency observations of water quality and gas exchange (e.g., aquatic eddy covariance), and improved spatial resolution in remote sensing (e.g., hyperspectral measurements and high-resolution imagery), presents new opportunities to understand and more comprehensively quantify the role of riparian canopies as Nature-based Solutions. The paper outlines how we may now couple these advances in observational technologies with developments in water quality modelling to integrate simulation of eutrophication impacts with organic matter dynamics and fate of synthetic toxic compounds. In particular regarding solar radiation drivers, this enables us to scale-up new knowledge of canopy-mediated photodegradation processes at a basin level, and integrate it with ongoing improvements in understanding of thermal control, eutrophication, and ecosystem metabolism

    Drone-based Structure-from-Motion provides accurate forest canopy data to assess shading effects in river temperature models

    Get PDF
    Climatic warming will increase river temperature globally, with consequences for cold water-adapted organisms. In regions with low forest cover, elevated river temperature is often associated with a lack of bankside shading. Consequently, river managers have advocated riparian tree planting as a strategy to reduce temperature extremes. However, the effect of riparian shading on river temperature varies substantially between locations. Process-based models can elucidate the relative importance of woodland and other factors driving river temperature and thus improve understanding of spatial variability of the effect of shading, but characterising the spatial distribution and height of riparian tree cover necessary to parameterise these models remains a significant challenge. Here, we document a novel approach that combines Structure-from-Motion (SfM) photogrammetry acquired from a drone to characterise the riparian canopy with a process based temperature model (Heat Source) to simulate the effects of tree shading on river temperature. Our approach was applied in the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Results show that SfM approximates true canopy elevation with a good degree of accuracy (R2 = 0.96) and reveals notable spatial heterogeneity in shading. When these data were incorporated into a process-based temperature model, it was possible to simulate river temperatures with a similarly-high level of accuracy (RMS

    Comparing likely effectiveness of urban nature-based solutions worldwide: the example of riparian tree planting and water quality

    Get PDF
    Amongst a spectrum of benefits, Nature-based Solutions (NBS) are increasingly being advocated as improving the quality of aquatic environments in urban areas. Of these, a widely adopted measure is tree planting. Yet, because of the local complexities and spatial variability of urban hydrological response, it is difficult to predict to what extent improvements in water quality will arise. To overcome this barrier, a standardised approach to process-based model simulation of urban river quality is described (QUESTOR-YARDSTICK (QUESTOR-YS)). The approach eliminates the influence of point sources of pollution and harmonises the way in which river hydrodynamics and contributory catchment size are represented. Thereby, it focuses on differences in water quality between cities due solely to climate, river discharge and urban diffuse nutrient pollution factors. The relative sensitivity to NBS establishment between urban water bodies in different cities anywhere across the world can also potentially be quantified. The method can be readily extended to include wastewater effluents. The validity of the approach is demonstrated for a small river in Birmingham, UK; and thence demonstrated for the case of 10 km of riparian tree planting in Birmingham, Oslo (Norway) and Aarhus (Denmark). Modelling suggests that riparian tree planting can substantially improve water quality in each example city for three key indicators of water quality in sensitive summer conditions (water temperature, chlorophyll-a and dissolved oxygen). Results show the level of benefit achievable in response to a fixed amount of planting will depend on the existing level of riparian tree occupancy

    Drought impacts on river water temperature: A process‐based understanding from temperate climates

    Get PDF
    High river water temperature (Tw) extremes have been widely reported during drought conditions as extreme low-flows often coincide with high atmospheric energy inputs. This has significant implications for freshwater ecosystem health and sustainable river management practices globally. However, the extent to which different meteorological and hydrological processes interact during droughts to govern Tw dynamics, and how this varies between environmental contexts, remains poorly understood. Here, we review the mechanisms controlling Tw dynamics during droughts across temperate, maritime environments, using the United Kingdom as a detailed case study. We evidence that Tw spikes have widely occurred during extreme low-flow events observed within droughts, but such trends have been inconsistent due to varying hydroclimatic conditions and river basin controls. To better understand this, we re-conceptualize the mechanisms governing drought-induced Tw dynamics operating across three ‘process sets’: (i) ‘energy flux dynamics’ as non-advective controls on Tw; (ii) the role of ‘reach-scale habitat conditions’ in mediating non-advective controls on Tw, including hydraulic properties (e.g., residence time) and physical conditions (e.g., riparian vegetation coverages, wetted perimeters); (iii) ‘water source contributions’ (surface water and groundwater) as advective heat and water flow controls. We review natural and anthropogenic influences affecting Tw controls within each process set and discuss how such mechanisms are likely to change under drought conditions. More systematic research (spanning various river environments and drought severities) is required to test such concepts, with existing scientific knowledge on drought-induced Tw dynamics being largely gleaned from studies examining non-extreme low-flow conditions or with broader focuses (e.g., annual thermal dynamics). We conclude by highlighting critical future research questions that need to be answered to better model Tw dynamics during future droughts and for unmonitored sites. Such scientific advances would more effectively inform how high Tw extremes could be better managed through evidence-based mitigation and adaptation strategies

    CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications

    Get PDF
    The Centre for Ecology & Hydrology – Gridded Estimates of Areal Rainfall (CEH-GEAR) data set was developed to provide reliable 1 km gridded estimates of daily and monthly rainfall for Great Britain (GB) and Northern Ireland (NI) (together with approximately 3500 km2 of catchment in the Republic of Ireland) from 1890 onwards. The data set was primarily required to support hydrological modelling. The rainfall estimates are derived from the Met Office collated historical weather observations for the UK which include a national database of rain gauge observations. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall (AAR), was used to generate the daily and monthly rainfall grids. To derive the monthly estimates, rainfall totals from monthly and daily (when complete month available) rain gauges were used in order to obtain maximum information from the rain gauge network. The daily grids were adjusted so that the monthly grids are fully consistent with the daily grids. The CEH-GEAR data set was developed according to the guidance provided by the British Standards Institution. The CEH-GEAR data set contains 1 km grids of daily and monthly rainfall estimates for GB and NI for the period 1890–2012. For each day and month, CEH-GEAR includes a secondary grid of distance to the nearest operational rain gauge. This may be used as an indicator of the quality of the estimates. When this distance is greater than 100 km, the estimates are not calculated due to high uncertainty

    A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Get PDF
    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (“hindcasts”) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe

    Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments

    Get PDF
    Dissolved organic carbon (DOC) turnover in aquatic environments is modulated by the presence of other key macronutrients, including nitrogen (N) and phosphorus (P). The ratio of these nutrients directly affects the rates of microbial growth and nutrient processing in the natural environment. The aim of this study was to investigate how labile DOC metabolism responds to changes in nutrient stoichiometry using 14C tracers in conjunction with untargeted analysis of the primary metabolome in upland peat river sediments. N addition led to an increase in 14C-glucose uptake, indicating that the sediments were likely to be primarily N limited. The mineralisation of glucose to 14CO2 reduced following N addition, indicating that nutrient addition induced shifts in internal carbon (C) partitioning and microbial C use efficiency (CUE). This is directly supported by the metabolomic profile data which identified significant differences in 22 known metabolites (34% of the total) and 30 unknown metabolites (16% of the total) upon the addition of either N or P. 14C-glucose addition increased the production of organic acids known to be involved in mineral P dissolution (e.g. gluconic acid, malic acid). Conversely, when N was not added, the addition of glucose led to the production of the sugar alcohols, mannitol and sorbitol, which are well known microbial C storage compounds. P addition resulted in increased levels of several amino acids (e.g. alanine, glycine) which may reflect greater rates of microbial growth or the P requirement for coenzymes required for amino acid synthesis. We conclude that inorganic nutrient enrichment in addition to labile C inputs has the potential to substantially alter in-stream biogeochemical cycling in oligotrophic freshwaters
    corecore