7 research outputs found

    Visual analytics for spatio-temporal air quality data

    Get PDF
    Air pollution is the second biggest environmental concern for Europeans after climate change and the major risk to public health. It is imperative to monitor the spatio-temporal patterns of urban air pollution. The TRAFAIR air quality dashboard is an effective web application to empower decision-makers to be aware of the urban air quality conditions, define new policies, and keep monitoring their effects. The architecture copes with the multidimensionality of data and the real-time visualization challenge of big data streams coming from a network of low-cost sensors. Moreover, it handles the visualization and management of predictive air quality maps series that is produced by an air pollution dispersion model. Air quality data are not only visualized at a limited set of locations at different times but in the continuous space-time domain, thanks to interpolated maps that estimate the pollution at un-sampled locations

    Using real sensors data to calibrate a traffic model for the city of Modena

    Get PDF
    In Italy, road vehicles are the preferred mean of transport. Over the last years, in almost all the EU Member States, the passenger car fleet increased. The high number of vehicles complicates urban planning and often results in traffic congestion and areas of increased air pollution. Overall, efficient traffic control is profitable in individual, societal, financial, and environmental terms. Traffic management solutions typically require the use of simulators able to capture in detail all the characteristics and dependencies associated with real-life traffic. Therefore, the realization of a traffic model can help to discover and control traffic bottlenecks in the urban context. In this paper, we analyze how to better simulate vehicle flows measured by traffic sensors in the streets. A dynamic traffic model was set up starting from traffic sensors data collected every minute in about 300 locations in the city of Modena. The reliability of the model is discussed and proved with a comparison between simulated values and real values from traffic sensors. This analysis pointed out some critical issues. Therefore, to better understand the origin of fake jams and incoherence with real data, we approached different configurations of the model as possible solutions
    corecore