519 research outputs found

    Elucidating genetic diversity and variability in Chickpea (Cicer arietinum L.) using yield attribution traits

    Get PDF
    Fifty-six desi chickpea (Cicer arietinum L.) advance breeding lines were evaluated in order to explore the possibility of genetic divergence for yield and its contributing traits using Mahalanobis’s D2 Statistics and Principal Component Analysis. High estimates of heritability, genetic advance, GCV and PCV were recorded for seed yield per plant (92.2%, 12.4%, 37.1% and 38.7%), biological yield per plant (88.1%, 21.9%, 29.1% and 31.0%) and harvest index (87.3%, 25.0%, 22.7% and 24.3%). All the test genotypes were sort into five discrete clusters. Biological yield/plant (23.5%), days to maturity (17.3%), harvest index (14.6%), seed yield/plant (11.3%), total number of pods/plant (7.4%) and 100 seed weight (6.49%) were found to have highest percentage contributions to genetic diversity in the present research. The first six principal components (PC1 19.7%, PC 16.2%, PC3 11.2%, PC4 9.69%, PC5 7.2% and PC6 6.69%) could explain 70.68% of the total of the interaction variation and have Eigen value more than one.  Genotypes JG 2016-1411, JG 2016-9605, JG 2017-46, ICCV 16105, ICCV 16109, ICCV 16112 and ICCV 16116 were present in more than one PCs hence contributed maximum towards yield and can be used in various breeding programmes for yield improvement.

    Discrimination of quark and gluon jets at 13TeV with the CMS experiment

    No full text
    In hard interactions at the LHC, partons hadronize, due to the QCD confinement property, and form jets in the final state. The identification of jets and the tagging of their flavour is very important to many physics analyses, such as precision measurements of the standard model or new resonance searches. Performance studies are presented on quark and gluon jet identification using different discriminators and their tagging efficiency

    Search for new resonances in photon and jet final states using CMS data

    No full text
    Searching for new resonances is one of the ways at the Large Hadron Collider to look for new physics beyond the standard model (BSM), put forward by many theoretical models. Such BSM models predict for instance the existence of substructure of quarks and the quantum black holes, with their signature manifesting in different final states in proton-proton collisions at the LHC. A search for a resonance in the γ+\gamma+jet final state is performed using the CMS collision data at a center-of-mass energy of 13 TeV corresponding to luminosity of 138 fb1^{-1}. If the resonance exists, the signal would appear as a bump over the invariant mass distribution of the known standard model (SM) background processes. The SM background estimation is performed using data and exclusion limits are set on the model parameters in the absence of a signal in the data

    Pulmonary Delivery of Voriconazole Loaded Nanoparticles Providing a Prolonged Drug Level in Lungs: A Promise for Treating Fungal Infection

    No full text
    Current therapies are insufficient to prevent recurrent fungal infection especially in the lower part of the lung. A careful and systematic understanding of the properties of nanoparticles plays a significant role in the design,development, optimization, and in vivo performances of the nanoparticles. In the present study, PLGA nanoparticles containing the antifungal drug voriconazole was prepared and two best formulations were selected for further characterization and in vivo studies. The nanoparticles and the free drug were radiolabeled with technetium-99m with 90% labelling efficiency, and the radiolabeled particles were administered to investigate the effect on their blood clearance, biodistribution, and in vivo gamma imaging. In vivo deposition of the drug in the lobes of the lung was studied by LC−MS/MS study. The particles were found to be spherical and had an average hydrodynamic diameter of 300 nm with a smooth surface. The radiolabeled particles and the free drug were found to accumulate in various major organs. Drug accumulation was more pronounced in the lung in the case of administration of the nanoparticles than that of the free drug. The free drug was found to be excreted more rapidly than the nanoparticle containing drug following the inhalation route as assessed by gamma scintigraphy study. Thus, the study reveals that pulmonary administration of nanoparticles containing voriconazole could be a better therapeutic choice even as compared to the iv route of administration of the free drug and/or the drug loaded nanoparticles

    Quality Control of Mass-Produced GEM Detectors for the CMS GE1/1 Muon Upgrade

    No full text
    The series of upgrades to the Large Hadron Collider, culminating in the High Luminosity Large Hadron Collider, will enable a significant expansion of the physics program of the CMS experiment. However, the accelerator upgrades will also make the experimental conditions more challenging, with implications for detector operations, triggering, and data analysis. The luminosity of the proton-proton collisions is expected to exceed 23×10342-3\times10^{34}~cm2^{-2}s1^{-1} for Run 3 (starting in 2022), and it will be at least 5×10345\times10^{34}~cm2^{-2}s1^{-1} when the High Luminosity Large Hadron Collider is completed for Run 4. These conditions will affect muon triggering, identification, and measurement, which are critical capabilities of the experiment. To address these challenges, additional muon detectors are being installed in the CMS endcaps, based on Gas Electron Multiplier technology. For this purpose, 161 large triple-Gas Electron Multiplier detectors have been constructed and tested. Installation of these devices began in 2019 with the GE1/1 station and will be followed by two additional stations, GE2/1 and ME0, to be installed in 2023 and 2026, respectively. The assembly and quality control of the GE1/1 detectors were distributed across several production sites around the world. We motivate and discuss the quality control procedures that were developed to standardize the performance of the detectors, and we present the final results of the production. Out of 161 detectors produced, 156 detectors passed all tests, and 144 detectors are now installed in the CMS experiment. The various visual inspections, gas tightness tests, intrinsic noise rate characterizations, and effective gas gain and response uniformity tests allowed the project to achieve this high success rate

    Production and validation of industrially produced large-sized GEM foils for the Phase-2 upgrade of the CMS muon spectrometer

    No full text
    The upgrade of the CMS detector for the high luminosity LHC (HL-LHC) will include gas electron multiplier (GEM) detectors in the end-cap muon spectrometer. Due to the limited supply of large area GEM detectors, the Korean CMS (KCMS) collaboration had formed a consortium with Mecaro Co., Ltd. to serve as a supplier of GEM foils with area of approximately 0.6 m2^{2}. The consortium has developed a double-mask etching technique for production of these large-sized GEM foils. This article describes the production, quality control, and quality assessment (QA/QC) procedures and the mass production status for the GEM foils. Validation procedures indicate that the structure of the Korean foils are in the designed range. Detectors employing the Korean foils satisfy the requirements of the HL-LHC in terms of the effective gain, response uniformity, rate capability, discharge probability, and hardness against discharges. No aging phenomena were observed with a charge collection of 82 mC/cm2^{2}. Mass production of KCMS GEM foils is currently in progress

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s= \sqrt{s} = 5.02 TeV

    No full text
    The inclusive jet cross section is measured as a function of jet transverse momentum pT p_{\mathrm{T}} and rapidity y y . The measurement is performed using proton-proton collision data at s= \sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4pb1\,\text{pb}^{-1}. The jets are reconstructed with the anti-kT k_{\mathrm{T}} algorithm using a distance parameter of R= R= 0.4, within the rapidity interval y< |y| < 2, and across the kinematic range 0.06 <pT< < p_{\mathrm{T}} < 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS \alpha_\mathrm{S} .The inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}
    corecore