43 research outputs found

    A High-Voltage PWM Current Driver for Hot-Wire Anemometers

    No full text

    Instantaneous planar pressure determination from PIV in turbulent flow

    Get PDF
    This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical considerations on its expected performance. These considerations are verified by a performance assessment on a synthetic flow field. Based on these results, guidelines regarding the temporal and spatial resolution required are proposed. The interrogation window size needs to be 5 times smaller than the flow structures and the acquisition frequency needs to be 10 times higher than the corresponding flow frequency (e.g. Eulerian time scales for the Eulerian approach). To further assess the experimental viability of the pressure evaluation methods, stereoscopic PIV and tomographic PIV experiments on a square cylinder flow (ReD = 9,500) were performed, employing surface pressure data for validation. The experimental results were found to support the proposed guidelines.Aerospace Engineerin

    3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Get PDF
    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data.Aerodynamics & Wind EnergyAerospace Engineerin
    corecore