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Abstract This paper deals with the determination of

instantaneous planar pressure fields from velocity data

obtained by particle image velocimetry (PIV) in turbulent

flow. The operating principles of pressure determination

using a Eulerian or a Lagrangian approach are described

together with theoretical considerations on its expected

performance. These considerations are verified by a per-

formance assessment on a synthetic flow field. Based on

these results, guidelines regarding the temporal and spatial

resolution required are proposed. The interrogation win-

dow size needs to be 5 times smaller than the flow struc-

tures and the acquisition frequency needs to be 10 times

higher than the corresponding flow frequency (e.g. Eulerian

time scales for the Eulerian approach). To further assess the

experimental viability of the pressure evaluation methods,

stereoscopic PIV and tomographic PIV experiments on

a square cylinder flow (ReD = 9,500) were performed,

employing surface pressure data for validation. The

experimental results were found to support the proposed

guidelines.

1 Introduction

The pressure field in a fluid is of great interest in both fluid

mechanics and engineering. Combined with the velocity

field, the pressure field gives a complete description of the

(incompressible) flow dynamics. Furthermore, the pressure

field is the main contributor to the aerodynamic loading of

bodies immersed in the fluid. Current techniques focus on

the determination of surface pressure and integral loads by

point pressure and force balance measurements. However,

so far, no method can instantaneously measure both the

velocity and pressure field.

Considerable effort has been put into deriving forces

from velocity fields (e.g. PIV data) and even though the

pressure field is an integral part of forces that are exerted

on the body immersed in the fluid, most efforts try to avoid

calculating the pressure explicitly (see e.g. Noca et al.

1999).

With the development and success of nonintrusive flow

diagnostic techniques, such as particle image velocimetry

(PIV, Raffel et al. 2007) in particular, it might be possible

to determine instantaneous aerodynamic loads. PIV has

already proven its capability in characterizing instantaneous

velocity fields and derived quantities such as vorticity,

whereas its use in determining the instantaneous pressure

field remains relatively unexplored. Several studies have

addressed different approaches to derive (mean) pressure

from PIV velocity data.

Gurka et al. (1999) derived from a steady velocity field

the pressure distribution in a channel flow. Concurrently,

Baur and Köngeter (1999) explored determination of

instantaneous pressure from time-resolved data, addressing

local pressure reduction in the vortices shed from a wall-

mounted obstacle, using a two-dimensional (2D) approach.

Hosokawa et al. (2003) used PIV data to obtain pressure
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distributions around single bubbles, while Fujisawa et al.

(2005) derived pressure fields around and fluid forces on a

circular cylinder. Liu and Katz (2006) show the application

of pressure determination from PIV on a cavity flow.

Fujisawa et al. (2006) apply pressure reconstruction on a

micro channel using micro-PIV data. Pressure evaluation

from PIV data has even found its extension into the com-

pressible regime as demonstrated by van Oudheusden (2008).

Although several studies have explored the possibility to

obtain the pressure field, relatively little attention has been

given to the systematic analysis of the key experimental

aspects that determine the accuracy of pressure determi-

nation. Essential elements are the spatial and temporal

resolution of the velocity measurements, as well as the

different approaches (Eulerian or Lagrangian) to determine

fluid acceleration and the subsequent integration of the

pressure gradient.

Charonko et al. (2010) review different approaches in a

Eulerian basis applied on two ideal sample flow fields and

show an application to an oscillating flow in a diffuser.

Violato et al. (2010) compare an Eulerian approach with a

Lagrangian approach on a rod-aerofoil configuration.

As the velocity data used as input are primarily obtained

from planar PIV, most of these studies are hampered by the

restriction of 2D (average) flow or necessarily making 2D

flow assumptions, where it is not obvious what the impact

of this assumption can be. Also, no complete comprehen-

sive analysis of the experimental parameters (PIV settings,

such as interrogation window size, overlap factors, etc.)

that will determine the success of pressure PIV has been

reported yet. Charonko et al. (2010) give an overview of

different integration approaches and of the influence of

temporal and spatial resolution, but do not include the fil-

tering effect that PIV has on both the velocity field and the

measurement noise (in combination with overlap, this will

lead to correlated noise, whereas they use uncorrelated

noise). They also did not include a Lagrangian approach in

their comparison, while comparisons of the Eulerian and

Lagrangian form showed that the Lagrangian approach is

less prone to measurement noise (Violato et al. 2010).

Christensen and Adrian (2002) found that for their

advecting turbulence experiment, the material acceleration

was about one order of magnitude smaller than the time

change of the velocity at one point, which would also

promote the use of a Lagrangian approach. On the other

hand, Jakobsen et al. (1997) found that for waves imping-

ing on a vertical wall, their Lagrangian approach had lim-

itations and showed bias effects, resulting in a worse

performance than their Eulerian approach. These contra-

dictory results show the need of a direct comparison of the

two approaches.

Furthermore, previous efforts to validate the pressure

determination have given little attention to advecting

vortices, whereas they are characteristic features occurring

in many fluid dynamic problems (e.g. turbulence and vor-

tex shedding). Also, a direct experimental validation for

instantaneous pressure is still lacking. In this paper, our

aim is to address these above-mentioned questions.

This paper assesses the performance of a Eulerian and

Lagrangian approach for turbulent flows. First, the oper-

ating principles are introduced together with theoretical

considerations to estimate the frequency response (both

truncation and precision effects) and the limitations of the

approaches. Next, the approaches are tested on synthetic

data consisting of an advecting Gaussian vortex from

which the influences of different flow parameters are

determined (e.g. advective velocity and vortex strength).

From both the theoretical considerations and the assess-

ment on the synthetic flow field, conclusions regarding the

proper application of the approaches will be given. To

show the experimental viability of the pressure evaluation

methods, stereoscopic PIV (stereo-PIV) and tomographic

PIV (tomo-PIV, Elsinga et al. 2006) experiments on a

square cylinder were performed, employing surface pres-

sure data for validation. Pressure-dominated flows around

bluff bodies pose relevant and challenging test cases for

pressure evaluation from planar PIV, due to the complex

time-evolving three-dimensional (3D) nature of the flow

field, especially at moderate to high Reynolds numbers (see

e.g. Williamson 1996). The current experiments were

performed at a Reynolds number where transition of the

shear layer is present and the near-wake shows significant

3D flow structures (see de Kat et al. 2009a, b).

2 Pressure evaluation from PIV

Pressure evaluation from PIV velocity data involves two

steps. First, the pressure gradient is evaluated from locally

applying the momentum equation in differential form. The

second step is to spatially integrate the pressure gradient to

obtain the pressure field. These steps can be performed in

different ways, where each way has its own limitations as

will be described in this section.

2.1 Operating principle

The incompressible momentum equation for 3D flow can

give the relation between the pressure gradient and the

velocity data in two different forms: the Eulerian form or

the Lagrangian form, given as

rp ¼ �q
ou

ot
þ u � rð Þu� mr2u

� �
or

rp ¼ �q
Du

Dt
� mr2u

� �
;

ð1Þ
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respectively. Although the viscous term can be determined,

its effect on the pressure gradient can generally be

neglected and will therefore be omitted in the following

discussion (see van Oudheusden et al. 2007, who found the

viscous contribution to be two orders of magnitude smaller

for a similar Reynolds number).

In case of 2D flow, planar time-resolved PIV will suffice

for determining the pressure gradients, but for 3D flow, all

components of the velocity and velocity gradient are nee-

ded, which may be accomplished by a time-resolved tomo-

PIV procedure, for example see Schröder et al. 2008).

We will concentrate on the procedure to determine the

pressure in a cross-sectional plane in the flow. To evaluate

the pressure in the plane (here defined as the x–y-plane),

only the two in-plane pressure gradient components are

needed. The reader should note, however, that these in-

plane pressure gradient components contain in- and out-of-

plane components of velocity and velocity gradient.

To obtain pressure, the pressure gradient can be spatially

integrated using a direct spatial integration of the pressure

gradient or using a Poisson formulation. In the latter

approach, the in-plane divergence of the pressure gradient

is taken Eq. 2 and subsequently integrated by a Poisson

solver. The in-plane divergence of a vector function, g, is

rxy � g ¼ ogx=oxþ ogy=oy, where gx and gy are the com-

ponents in x- and y-direction, respectively.

rxy � rp ¼ o2p

ox2
þ o2p

oy2
¼ �qfxy ð2Þ

where fxy is a function of the velocity field obtained by

taking the in-plane divergence of Eq. 1 and dividing by

-q, resulting in

fxy ¼ f2D þ f3D ¼
ou

ox

� �2

þ2
ov

ox

ou

oy
þ ov

oy

� �2
( )

þ
o rxy � u
� �

ot
þ u � rð Þ rxy � u

� �
þ ow

ox

ou

oz
þ ow

oy

ov

oz

� �

ð3Þ

where f2D indicates the part caused by the in-plane part of

the flow and f3D indicates the additional terms for 3D flow.

Now, even for 3D flow, most of the extra terms that

appear can be extracted from planar-PIV data, see Eq. 3.

The additional 3D flow contributions contain the in-plane

divergence of the velocity, which can be derived from

planar PIV data. 3D velocity information is needed for the

parts containing an out-of-plane gradient.

2.2 Numerical implementation

For the numerical implementation, we choose to split the

problem in two. First, we determine the pressure gradient

field and subsequently, we determine the pressure field by

integrating the pressure gradient field. This makes it easier

to pinpoint where the errors in the pressure determination

arise. In the following discussion, Dt refers to the vector

field time separation (1/facq) as distinct from the laser pulse

time separation for which we will use dt.

The Pressure gradient can be computed in two different

ways: a Lagrangian form where all quantities are evaluated

with respect to an element moving with the flow and in a

Eulerian form where everything is taken relative to a fixed

spatial location. For the Eulerian approach, we use second-

order central finite differences in space and time, as

expressed by

ou

ox
x; y; z; tð Þ ¼ u xþ h; y; z; tð Þ � u x� h; y; z; tð Þ

2h
þ Oðh2Þ

ð4Þ
ou

ot
x; y; z; tð Þ ¼ u x; y; z; t þ Dtð Þ � u x; y; z; t � Dtð Þ

2Dt
þ OðDt2Þ; ð5Þ

respectively. u is the velocity component in x-direction, h is

the grid spacing, and Dt is the time separation between

consecutive velocity fields. The description of space and

time is therefore not linked in computation or formulation

(see Eq. 1).

For the Lagrangian approach, we need to reconstruct the

fluid-parcel trajectory. In the present study, the fluid tra-

jectory is reconstructed using a pseudo-tracking approach,

which is derived from velocity fields rather than particle

locations (see Liu and Katz 2006). A second-order fluid

path is reconstructed using an iterative approach (indicated

by the superscript k) given by

xk
p t; sð Þ ¼ xþ u x; tð Þsþ 1

2

Du

Dt

k

x; tð Þs2 ð6Þ

Du

Dt

kþ1

x; tð Þ ¼
u xk

p t;Dtð Þ; t þ Dt
� 	

� u xk
p t;�Dtð Þ; t � Dt

� 	
2Dt

ð7Þ

where xp is the particle location. Equation 6 is the second-

order expansion of the particle location with time interval s
relative to time instance t.

Although for the Lagrangian form, the description of

space and time seems not to be linked, based on the for-

mulation in Eq. 1, it is clearly linked in the computation

Eq. 6.

The pressure gradient field is consequently determined

using Eq. 1. Both approaches use linear forward or back-

ward schemes at domain edges.

Pressure integration is done by a Poisson solver that

solves the in-plane Poisson formulation Eq. 2 directly

using a standard 5-point scheme (second-order central
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differences) with the forcing term determined as given in

Eq. 8.

�qfxy ¼
o

ox

op

ox






PIV

� �
þ o

oy

op

oy






PIV

� �
ð8Þ

To verify the proper working of this approach, we

compared it to two alternative approaches for the inte-

gration of the pressure gradient: the omnidirectional

integration approach used by Liu and Katz (2006) and a

least-squares approach. A third approach, a direct spatial

integration approach, was tested (see de Kat et al. 2008),

but was excluded from this comparison because of its

unfavourable directional dependence (see van Oudheusden

2008).

The differences in peak and noise response of the

methods were found to be well below 1%, when tested on a

stationary Gaussian vortex (see Sect. 3) on a grid of

60 9 90 points. Furthermore, Charonko et al. (2010) found

that when sufficiently sampled, different integration tech-

niques give adequate results, even for different inputs (e.g.

neglecting parts in Eq. 3). Based on these findings, the use

of the Poisson approach is verified to be adequate for the

following analyses.

Boundary conditions are enforced on all edges of the

pressure evaluation domain and consist of a reference

boundary condition in a point or domain (pressure is pre-

scribed) and Neumann conditions (pressure gradient is

prescribed) on the remaining edges. The reference bound-

ary condition ideally would be placed in the inviscid outer

flow, where the Bernoulli equation can be used. However,

due to the limited measurement domain of PIV, the

boundary conditions need to be enforced within the dis-

turbed flow domain. To correct for this, the reference

pressure is computed with an extended version of the

Bernoulli equation that holds for an irrotational inviscid

unsteady advective flow with small mean velocity gradi-

ents as given by

pþ 1

2
q u � uþ u0 � u0ð Þ ¼ p1 þ

1

2
qV2
1 ð9Þ

where u is the mean velocity and u0 is the fluctuation

around the mean. The Neumann boundary conditions make

use of Eq. 1 and are implemented by estimating the value

of a point outside the domain (a ghost point) by using the

gradient at the point on the boundary for extrapolation and

thereby completing the 5-point scheme.

2.3 Frequency response

A key feature of an experimental technique used to mea-

sure turbulent flow is its frequency response. The fre-

quency response of the measurement procedure and

subsequent data analysis are affected in both space and

time by truncation and precision errors. The influence of

the truncation error is estimated using (simple) theoretical

considerations. The influence of the precision error is

estimated using linear error propagation.

Although we set out to start from a velocity field with its

corresponding uncertainty, we need to know how PIV fil-

ters the velocity field and the noise on it, in order to know

what the starting point of the pressure derivation is. PIV

acts similar to a moving average (see e.g. Schrijer and

Scarano 2008, who also show improvements can be

achieved with iterative schemes), resulting in a response

(Fig. 1) to a 2D signal as given by

TPIV; 2D ¼ sinc2 WS

kx

� �
ð10Þ

where TPIV, 2D denotes the transfer function of PIV to a 2D

signal, sinc (x) = sin(px)/px, WS is the interrogation win-

dow size, and kx is the spatial wavelength of the input

signal. Foucaut et al. (2004) show that noise is also

affected by this low-pass filter behaviour.

PIV also has a limited temporal response, which is

related to the laser pulse time separation, dt, and restricts

the frequencies of flow phenomena that can be captured in

individual velocity fields. This, however, is generally less

restrictive than the limitation by the acquisition frequency

(Dt� dt) and we will therefore focus on the influence of the

acquisition frequency.

The current implementation of the determination of the

pressure gradient field involves taking central finite dif-

ferences. These central finite differences act as a low-pass

filter due to the truncation error (see e.g. Foucaut and

Stanislas 2002), with a response given in Eq. 11 (Fig. 1).

Fig. 1 Amplitude response of PIV, central finite differences (CD),

and the Poisson solver (PS). PIV: l* = WS/kx; CD and PS: l* = 2h/

kx. PS is shown till l* = 1, which is the Nyquist limit of PS and CD
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TCD ¼ sinc
2h

kx

� �
ð11Þ

where TCD denotes the transfer function of the central finite

differences, h is the grid spacing. When applied in time the

filter response is the same, i.e. replace h with Dt and kx with

kt.

A numerical test and theoretical analysis indicates also

that the Poisson solver acts as a low-pass filter with an

amplitude response as given in Eq. 12 (Fig. 1).

TPS ¼
1þ cos p 2h

kx

� 	

2 � sinc 2h
kx

� 	 ð12Þ

where TPS denotes the transfer function of the Poisson

solver.

For the pressure derived using the Eulerian form of the

pressure gradient, this means the filter due to the central

finite differences acts in space and time separately with an

additional effect of the filter of the Poisson solver in space.

When using the Lagrangian form of the pressure gradient,

the low-pass filter due to the central finite differences only

acts in time and the filter of the Poisson solver in space.

However, for the Lagrangian approach, the reconstruction

of the trajectory of the fluid-parcel path also has an addi-

tional dependency on the spatial frequency response (see

Eq. 6).

Violato et al. (2010) state the temporal limitation of a

Eulerian approach to be related to the acceleration being

measured on the same structure, leading to the expression

given by

DtEul\
1

4

kx

Ua
ð13Þ

where DtEul is the time separation between consecutive

velocity fields for the Eulerian approach, kx is the spatial

wavelength, and Ua is the advective velocity.

However, this is only a part of the terms needed for the

pressure gradient (see Eq. 1) and therefore does not state

how strong the impact of this improper sampling will be.

Following similar reasoning, i.e. a vortex should not

exceed half a turn during the evaluation of the material

acceleration, an equivalent expression can be derived for

the temporal limitation of the Lagrangian approach,

DtLag\
1

4

2pr

Vh
ð14Þ

where DtLag is the time separation between consecutive

velocity fields for the Lagrangian approach, r is the radius,

and Vh is the tangential velocity.

Here, the expression is linked directly to the pressure

gradient and its effect is expected to influence the complete

domain. Also, the domain should be large enough for the

fluid path to be reconstructed. However, it is not possible to

accurately capture these effects in simple theoretical con-

siderations, and therefore, they will be assessed on a syn-

thetic flow field in Sect. 3.

To have an estimate for the sensitivity to noise (preci-

sion error) of both approaches, we follow a linear error

propagation procedure as laid down by Kline and

McClintock (1953) (see e.g. Stern et al. 1999, for a more

thorough exposition). The error is assumed to be uncorre-

lated and to have a normal distribution. The error on a

single sample can be estimated by the RMS value of the

noise of the measurement tool, and the error on a derived

quantity can then be estimated as the root of the sum of the

square of the uncertainties of the samples where it was

derived from multiplied by their respective sensitivity. The

noise propagation from the velocity field to the pressure

field for the Eulerian form gives

epEul
/ eu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

2Dt2
þ ruj j2h2 þ uj j2

2

s
ð15Þ

where epEul
is the (estimated RMS) error for the pressure

based on the Eulerian approach, eu is the noise on the

velocity, h is the grid spacing, Dt is the velocity field time

separation, |ru| is the magnitude of the gradient of the

streamwise component of the velocity, and juj is the velocity

magnitude.

For the estimation of the noise sensitivity of the

Lagrangian method, the fluid path reconstruction is simpli-

fied and taken to be linear (i.e. Eqs. 6, 7 are only used once).

The result of the noise propagation then is

epLag
/ eu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

2Dt2
þ ruj j2h2

2

s
ð16Þ

where epLag
is the error for the pressure based on the

Lagrangian approach.

These results indicate that when the (advective) velocity

of the flow is small (with respect to the other terms in

Eqs. 15, 16), both methods will react similarly to noise,

whereas when the (advective) velocity is large, the Eule-

rian approach will suffer, while the Lagrangian approach

remains insensitive.

Due to the nonlinearity (with respect to the velocity

field) of the pressure gradient determination, the exact

behaviour of both methods is not available. Also, the noise

propagation estimation is limited to uncorrelated noise,

whereas Foucaut et al. (2004) show that the (spatial) scales

in the noise are affected by the PIV processing, especially

apparent when using higher overlap factors (OF). Fur-

thermore, the filtering effect of PIV is known to be dif-

ferent for 1 and 2D signals (see e.g. Schrijer and Scarano

2008).
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Nevertheless, the considerations presented in this sec-

tion provide a good indication of the parameters that will

influence the performance of the pressure determination

from PIV and what effect they may have. In summary, the

Eulerian approach is expected to be more sensitive to noise

and advective motion, whereas the Lagrangian should have

difficulties capturing rotational flow, because this compli-

cates the flow path reconstruction.

To substantiate and quantify these theoretical consider-

ations on the performance of pressure determination, dif-

ferent methods are applied to a synthetic flow field, where

the input velocity field has a known pressure distribution.

3 Performance assessment on a synthetic flow field

Vortices are arguably the most relevant flow structures

occurring in practice, likely to be encountered in many

fluid dynamic studies where pressure is of interest (e.g.

separated flow and bluff body flows). The advection of a

Gaussian vortex is taken to serve as a test case for the

pressure evaluation procedures. The analytic expression for

the velocity field is used to generate synthetic PIV velocity

fields, and the corresponding analytic pressure field is used

as a reference to validate the pressure field computed from

the synthetic PIV velocity fields. In the simulated experi-

ments, the influence of resolution in space and time is

considered, as well as noise and spatial filtering caused by

PIV, and the effects of 3D (out-of-plane) flow.

3.1 Synthetic flow field

The synthetic flow field consists of a linear combination of

a Gaussian vortex and a uniform velocity field in x-direc-

tion, Ua (corresponding to the advection velocity of the

vortex). The flow field relative to the vortex centre is

described by the tangential velocity, Vh, in a cylindrical

polar coordinate system aligned with the vortex axis and

moving with the vortex. The radius where Vh reaches its

maximum, Vp, is defined as the core radius, rc (see Fig. 2).

The velocity distribution and corresponding pressure dis-

tribution (relative to p1 ¼ 0) are given by

Vh ¼
C

2pr
1� e

�r2

ch

� �
and ð17Þ

p ¼ � 1

2
qV2

h �
qC2

4p2ch
E1

r2

ch

� �
� E1

2r2

ch

� �� �
; ð18Þ

where C is the circulation, ch = rc
2/c, and c = 1.256431

is a constant to have Vp at rc. The minimum pressure

is limr!0 p ¼ �qC2 ln 2= 4p2chð Þ: E1 is the exponential

integral and is defined as

E1ðxÞ ¼
Z1

x

e�t

t
dt: ð19Þ

3D flow is simulated by tilting the vortex axis at an

angle with the x–y-plane, a, where the orientation of this

angle with respect to the y-direction is set by a second

angle, b (see Fig. 2).

3.2 Numerical implementation

Velocity volumes were created by mapping Eq. 17 onto a

cartesian grid (with the vortex axis placed at the centre of

the domain) and adding the Ua, resulting in a grid with

values for the u, v, and w components of velocity and

corresponding pressure. The same procedure is followed to

create velocity volumes for Dt and �Dt, where the vortex

axis is moved the corresponding distance along the

advection direction (i.e. UaDt and �UaDt).

Nine random noise volumes were created and used in

three sets of three (each time one for �Dt; 0 and Dt). In this

way, we assured that the effects of varying parameters are

not influenced by the use of different noise volumes (from

Fig. 2 Synthetic tangential velocity distribution and corresponding

pressure distributions

1094 Exp Fluids (2012) 52:1089–1106
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case to case) and, by using three sets, we reduce the

influence of having a specific response to a single noise

volume set.

To account for the filtering effect, PIV has on the

velocity field and the noise in the velocity field (see Fou-

caut et al. 2004), the velocity volume and separate random

noise volumes were filtered using a moving-average filter

over the interrogation window size (WS) simulating an OF

of 75%. After filtering, the volumes were cropped to avoid

end-effects of the filtering procedure. The final volumes

were 257 9 257 9 9 points. The thickness of these vol-

umes was sufficient to reconstruct 3D fluid paths for the 3D

flow assessment with the Lagrangian approach. For the

lower OF values, a subset of this velocity volume was

taken. For each case, the noise level was scaled to give the

desired root-mean-square (RMS) values, eu, as a percentage

of the maximum (theoretical) velocity occurring in the flow

field, in line with PIV practice.

From the velocity fields, the pressure gradient fields

were determined using either the Eulerian or Lagrangian

approach and subsequently integrated using the Poisson

approach, with Dirichlet conditions on the lower side of the

domain and Neumann conditions, on the remaining edges,

see Fig. 3.

The resulting pressure fields were assessed in two dif-

ferent ways. First, the peak response was determined by

taking the ratio of the calculated peak pressure, pp, and the

peak of the theoretical pressure, pref (see Fig. 2). Second,

the noise response, ep, was determined by taking the

(spatial) RMS of the difference between the pressure

calculated from the velocity field without noise and the

pressure calculated from the velocity field with noise. Each

value of the noise response presented is an average of the

results of the three sets of noise used.

To investigate the effects of the vortex moving along or

across the boundary of the domain (see Fig. 3 for a

schematic representation), the vortex centre was placed at

different distances from the boundary (ranging from the

centre of the domain to the boundary of the domain). The

influence is determined by taking the difference between

the pressure determination for a stationary vortex and an

advecting vortex for each location. The maximum pertur-

bation of all distances is then taken to represent the influ-

ence of that advection velocity.

3.3 Results

Figure 4 shows the peak and noise responses for different

spatial and temporal resolutions. The temporal resolution is

split into two contributions, one related to the advection of

the vortex (displacement) and one related to the strength of

the vortex (rotation). The variations were taken with

respect to a noncritical base-line as indicated in the caption

of Fig. 4.

Figure 4a shows the variation of the peak response with

the spatial resolution. The peak response decreases with

decreasing spatial resolution. The trend is as expected and

is in good agreement with the trend in Fig. 1. The Eulerian

and Lagrangian approach perform nearly identical.

Increasing the OF only shows significant improvement for

the poor resolutions (big WS). The temporal resolution has

no influence on the Eulerian approach (Fig. 4b, c).

Although this seems in contrast with Eq. 13 (that states the

acceleration should not be properly captured), the reason

why this does not affect the pressure computation can be

understood from the Poisson formulation, which is used to

determine the pressure. The flow is 2D, and therefore, the

acceleration is completely absent in the 2D part of Eq. 3,

the only way that this improper time sampling can affect

the results is via the acceleration at the boundaries of

the domain. This influence will be covered later. The

Lagrangian approach behaves as expected. It is not affected

by the advective velocity (Fig. 4b), but is affected by the

tangential velocity (Fig. 4c). When plotted with the vortex

turnover time, VpDt=2prc (Fig. 4g), it shows a drop off at

VpDt=2prc � 0:1, which is in line with the estimation of

the temporal limitation found earlier Eq. 14.

The noise response is unaffected by the spatial resolu-

tion, and the OF only has a small influence (Fig. 4d).

Figure 4e shows that the noise on the pressure field for the

Lagrangian approach increases almost linear with Ua, which

is consistent with Eq. 16, where eu is defined as a per-

centage of Umax in this study. Based on Eq. 15, the noise

on the pressure field for the Eulerian approach is predicted

to be larger than that for the Lagrangian approach and to

increase quadratically with Ua, which is in good agreement

with the trends observed in Fig. 4e. Figure 4f shows an

unexpected decreasing trend with increasing tangential

velocity. However, it can be shown that pref / V2
p and

Ua

Vortex moving 
along the boundary

Vortex moving 
across the boundary

x

y

Dirichlet condition
Neumann condition

Ua

Ua

Fig. 3 Schematic of the computational domain. Indicated are the

primary vortex location, the vortex moving along the boundary of the

domain and the vortex moving across the boundary of the domain
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therefore ep=pref / 1=Vp, which explains the trend

observed. Figure 4h shows a linear behaviour of the noise

on the pressure with increasing noise on the velocity field,

which again is in good agreement with Eqs. 15 and 16.

Figure 4i shows the influence of the angle between the

vortex axis and the plane normal, a, for 2D input and 3D

input. The 2D input is a subset of the 3D input without the

out-of-plane components, which simulates planar or stereo-

PIV. The reader should note that although stereo-PIV does

give the out-of-plane velocity component, the out-of-plane

velocity gradient is needed to make use of the out-of-plane

velocity component (see Eq. 3), hence making it equivalent

to planar PIV for pressure determination. It is clear that the

peak response for the 2D input is very similar to cosðaÞ: No

effect associated to b was found.

As indicated earlier, the Eulerian approach is expected

to suffer from a temporal limitation on the edges of the

domain related to determining the acceleration term of the

pressure gradient, see Eq. 13. The maximum perturbation

was found to be located at the boundaries, and it decreases

with increasing distance from the boundary / 1=d2, where

d is the distance to the boundary). Figure 4j–l show the

results from the assessment of the edge effects. Figure 4j

shows the error (black, left scale) introduced along the

edge together with the corresponding acceleration (grey,

right scale) for a vortex moving along the boundary (top)

and for a vortex moving across a boundary (bottom) . This

shows the error is related to the acceleration. To quantify

the influence of Ua and rc, the maximum deviation due to

the edge effect is determined and plotted with UaDt=rc: For

the Eulerian approach, the edge effect error shows a rapid

increase in the error starting at UaDt=rc � 0:2, which is in

line with Eq. 13, for both the case where the vortex moves

along the boundary (Fig. 4k) and the case where the vortex

moves across the boundary (Fig. 4l). The Lagrangian

approach reacts as expected with only a minor influence for

the case where the vortex moves across the boundary (Fig.

4l), which can be attributed to the switch to the forward/

backward scheme at the boundary.

3.4 Discussion

Although the present evaluation is not directly comparable

with the results of the analysis of Charonko et al. (2010),

since they did not split the influences of truncation and

precision effects, the trends of the peak and noise responses

combined match their results.

Successful determination of pressure from PIV data

needs to comply with a number of criteria. For both

approaches, Eulerian and Lagrangian, the WS should be

sufficiently small with respect to the flow structures. A

larger OF does increase the quality of the pressure deter-

mination, but the effect of OF is less pronounced when the

WS is sufficiently small. For WS smaller than 0.25 rc, the

peak response is better than 95%.

Complete 3D velocity measurements are needed to

properly capture the pressure in 3D flow, where the impact

of not taking the out-of-plane components into account

results in a peak response modulation that behaves like

cosðaÞ, where a is the angle of the vortex axis with the

measurement plane.

Reducing the measurement noise on the velocity fields

directly improves the pressure determination for both

approaches.

The Eulerian approach suffers more from measurement

noise than the Lagrangian approach, especially when

advection velocity is present, and is furthermore limited by

the advection of flow structures over the boundary. The

time separation between subsequent velocity fields needs to

be sufficiently small to correctly capture the acceleration on

the boundaries. Time separation should be Dt\0:2rc=Ua,

which means that the acquisition frequency needs to be

10 times larger than the largest frequency at a given point

in the flow (i.e. the Eulerian time scale), facq [ 10 9 fflow

(assuming k & 2rc).

The Lagrangian approach is limited by the turnover time

of the structures in the flow. The time separation needs to

be sufficiently small to correctly capture pressure The time

separation should be Dt\0:1� 2prc=Vp, which means that

the acquisition frequency needs to be larger than 10 times

the turnover frequency in the flow (i.e. the Lagrangian time

scale), facq [ 10 9 fturnover.

4 Experimental assessment

In previous experiments (de Kat et al. 2009a), the flow

around a square-section cylinder was observed to be pre-

dominantly 2D along the side of the cylinder and found to

have considerable 3D fluctuations in the wake (see also de

Kat et al. 2009b). Using similar experimental setups and

applying both stereo-PIV and thin-volume tomo-PIV, we

will describe the performance of pressure evaluation under

Fig. 4 Spatial and temporal influences on peak and noise response

and edge effects. Unless indicated otherwise: Ua ¼ 1WS=Dt;Vp ¼
0:5WS=Dt; rc ¼ 8WS; OF = 75%, a = 0�, b = 0�; for the noise

response: eu ¼ 1%Umax: a Peak response with spatial resolution.

b Peak response with advective velocity. c Peak response with

tangential velocity. d Noise response with spatial resolution. e Noise

response with advective velocity. f Noise response with tangential

velocity. g Peak response with vortex turnover time, Lagrangian

approach. h Noise response with velocity noise. i Peak response with

angle. j Pressure error for the Eulerian approach on the boundary of

the domain shown in black. Analytic Eulerian acceleration shown in

grey. Top vortex moving along a boundary. Bottom vortex moving

across a boundary. k Maxima of absolute error on the edge for a

vortex moving along a boundary. l Maxima of absolute error on the

edge for a vortex moving across a boundary

b
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these conditions and how it links in with theoretical per-

formance estimation and the numerical assessment of the

preceding sections. Although we have seen that stereo-PIV

does not provide more useful information for the pressure

determination than planar PIV, it allows assessment of the

three-dimensionality of the flow and for this reason, it was

used instead of planar PIV. First, we present the results

from stereo-PIV to show what accuracy the pressure

evaluation can achieve using planar PIV. Secondly, the

tomo-PIV results are used to assess the influence of 3D

flow effects and to what extent the pressure evaluation

improves with inclusion of the 3D flow terms.

4.1 Experimental arrangement and procedure

Experiments were performed in a low-speed, open-jet wind

tunnel at the Aerodynamics laboratory at Delft University of

Technology. The tunnel outlet has dimensions 40 cm 9

40 cm. A square-section cylinder with dimension 30 mm 9

30 mm (D 9 D) and 34.5 cm in span was fitted with end-

plates and positioned in the middle of the free stream. The

geometric blockage was 6.5%. The nominal free-stream

velocity, U, was 4.7 m s-1 (nominal dynamic pressure, q =

13.5 Pa), giving Reynolds number ReD = UD/m = 9,500.

The main vortex shedding frequency was fs = 20 Hz, corre-

sponding to a Strouhal number of St = fsD/U = 0.13. The

free-stream turbulence intensity was assessed by hot-wire

anemometry and was approximately 0.1%. A summary of

the experimental conditions and their uncertainties is given

in Table 1.

The cylinder was instrumented with two flush-mounted

pressure transducers located in close proximity to midspan

of the model to provide reference values for the pressure

signals extracted from the PIV data. Figure 5 shows the

field-of-view used for the stereo-PIV and tomo-PIV setup

as well as the transducer locations. For stereo-PIV, one

transducer was located at the bottom and one at the base

while for tomo-PIV both transducers are located at the base

on either side of the measurement volume. For comparison

purposes, pressure measurements were performed with

both transducers located at the side of the cylinder on either

side of the measurement location.

The pressure transducers, Endevco 8507-C1, have a

range of 1 psi (6,895 Pa) and a typical sensitivity of

175 mV psi-1 (25 lV Pa-1), with a sensitivity change

related to temperature of \0.2% under current operating

conditions. They were calibrated, using a closed system

with a U-tube, against a Mensor DPG 2001 (range 0.5 psi;

3,447 Pa, uncertainty 0.010% full scale). Signal recording

was performed using a National Instruments data acquisi-

tion system (consisting of: PCI-6250, SCXI-1001,

SCXI-1520 and SCXI-1314) operating at 10 kHz (band-

width (-3 dB): 20 kHz). The resulting noise level was

4 lVRMS resulting in a resolution of 0.3 Pa (twice the RMS

level). The zero drift for each run was \2 lV. Unless

stated otherwise, the pressure signals are unfiltered (and not

corrected for the effects of wind tunnel blockage). The

pressure measurement on the side of the model suffered

from laser influences. This laser influence was removed by

deleting erroneous points in the pressure signal and filling

the gaps by interpolation. The signal was subsequently

low-pass filtered with a second-order fit (robust Loess) over

25 points. The power spectrum was checked against a

pressure measurement without laser interference and was

confirmed to be unchanged for frequencies up to 400 Hz.

A high-repetition-rate PIV system was used to capture

the flow. Flow seeding was provided by a Safex smoke

generator, which delivered droplets of about 1 lm in

diameter. The measurement plane was illuminated by a

Quantronix Darwin-Duo laser system with an average

output of 80 W at 3 kHz at a wavelength of 527 nm. The

typical energy per pulse was 16 mJ at 2.7 kHz. The laser

pulse time separation, dt, was 90 ls. Images were acquired

by Photron Fastcam SA1 cameras (two for the stereo setup

and four for the tomographic setup) with a 1,024 9 1,024

pixels sensor (pixel-pitch 20 lm), recording image pairs at

2.7 kHz, equipped with Nikon lenses with focal length

60 mm and aperture set at 2.8 (top cameras in tomo-setup

at 5.6). One camera was positioned normal to the image

plane. The other cameras were mounted with adapters such

that the Scheimpflug criterion was met. A total of 2,728

image pairs, spanning just over 1 s, was captured for both

configurations. Synchronization between the cameras,

laser, and image acquisition was accomplished by a

LaVision programmable unit in combination with a high-

speed controller, both controlled through DaVis 7.2 soft-

ware. Particle image pairs were processed using DaVis 7.4

software. Self-calibration for both the stereo- and tomo-

PIV was performed, see Wieneke (2005, 2008). Particle

images were preprocessed by subtracting the time mini-

mum and applying a 3 9 3 gaussian filter. Vector fields

were processed with a median test (see e.g. Westerweel and

Scarano 2005) combined with a multiple correlation peak

x

y

U

Side-wall 
transducer 
location

Base-wall transducer location

Stereo-PIV

Tomo-PIV

Fig. 5 Schematic showing the fields-of-view, x- and y-directions and

pressure transducer locations
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check. Remaining spurious vectors were removed and

replaced using linear interpolation. The total number of

spurious vectors was \2% for both data-sets.

An overview of the main PIV settings used in this investi-

gation is given in Table 2. For the stereo-PIV, the field-of-view

(FOV) was captured with a digital resolution of 15.7 pix mm-1.

The laser light sheet thickness was approximately 1 mm. The

final interrogation WS was varied between 16 9 16 pixels and

128 9 128 pixels and the OF between 0 and 75% resulting in

vector grids of 236 9 250 vectors to 14 9 15 vectors (after

cropping), for 16 9 16 pixels with 75% OF and 128 9 128

pixels with 50% OF, respectively. For the tomo-PIV, the illu-

minated volume was 70 mm 9 70 mm 9 4 mm. It was cap-

tured with a digital resolution of 14.3 pix mm-1. The final

interrogation volume size of 16 9 16 9 16 voxels with an OF

of 50% gave a vector grid of 99 9 110 9 7 vectors (after

cropping) with vector spacing of 0.56 mm.

The in-plane pressure gradient was determined using

either the Lagrangian or the Eulerian formulation. The

pressure field was subsequently obtained by the Poisson

integration approach with a Dirichlet condition on the

lower edge of the domain and Neumann conditions on the

remaining edges.

The estimated error on the velocity field expressed as a

RMS uncertainty was determined using a linear uncer-

tainty-propagation analysis, taking the free-stream particle

displacement and the error on the particle displacement.

Based on results from undisturbed flow for the stereo-PIV

setup (with the model removed), the RMS error on the in-

plane particle displacement was found to be 0.1 pixel. The

error on the velocity was found to be ru/U & 1.5%, where

ru is the RMS uncertainty on the velocity and U is the free-

stream velocity.

4.2 Data analysis

Pressure signal time series are extracted from the pressure

fields obtained from PIV. The (temporal) mean, p and pref , and

(temporal) RMS, rp and rref, are determined of the PIV

pressure signal and pressure transducer signal, respectively.

Consecutively, the mean response p=pref and RMS response

rp/rref are determined. Next, the temporal correlation coeffi-

cient between the pressure signals from PIV and the pressure

transducers is determined using

Corr. coeff. =
covðp; prefÞ

rprref

ð20Þ

where cov(p, pref) is the covariance between the two

pressure signals.

Power spectral densities are determined for the main PIV

cases and their corresponding pressure transducer signals by

averaging the spectra from seven blocks with 50% overlap.

Finally, we determine the coherence between the pressure

signal time series from PIV and the pressure signal time series

from the pressure transducers (also using seven blocks with

50% overlap). We are only interested in comparing the signals

as they are (without any phase-lag), and therefore, we take the

real part of the coherence and define this to be the dynamic

correlation. The dynamic correlation represents the correla-

tion coefficient per frequency component.

Dyn. corr. ¼ < Cpprefffiffiffiffiffiffiffi
Ppp

p ffiffiffiffiffiffiffiffiffiffiffiffi
Pref ref

p
 !

ð21Þ

where Cppref
is the co-spectrum of the pressure from PIV

and the pressure from the pressure transducer, and Ppp and

Pref ref are the power spectral densities of the pressure from

PIV and the pressure transducer, respectively.

4.3 Results

4.3.1 Stereo-PIV

A typical result for stereo-PIV is shown in Fig. 6, which

illustrates the relation between separated high-vorticity

Table 1 Experimental conditions

Variable Value Uncertainty (%)

Free-stream velocity, U 4.7 m s-1 ±2

Free-stream turbulence intensity 0.1% U –

Tunnel dimension 400 mm –

Cylinder dimension, D 30 mm –

Geometric blockage 6.5% –

Cylinder span 345 mm –

Reynolds number, ReD 9,500 ±2

Dynamic pressure, q 13.5 Pa ±2

Vortex shedding frequency, fs 20 Hz ±1

Strouhal number, St 0.13 ±2

Table 2 Main PIV settings

Stereo-PIV Tomo-PIV

Number of cameras 2 4

Lenses Nikon 60 mm Nikon 60 mm

Aperture setting, f# 2.8 2.8 and 5.6

Angle between cameras 32� 30� 9 30�
Digital resolution 15.7 pix mm-1 14.3 pix mm-1

Acquisition frequency, facq 2.7 kHz 2.7 kHz

Laser sheet thickness 1 mm 4 mm

Laser pulse time sep., dt 90 ls 90 ls

Velocity field time sep., Dt 370 ls 370 ls

Initial interrogation area 32 9 32 pix 32 9 32 9 32 pix

Final interrogation area 16 9 16 pix 16 9 16 9 16 pix

Overlap factor 50% 50%

Vector field size 118 9 125 99 9 110 9 7
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regions and low-pressure regions, especially apparent in

the separated shear layer along the bottom side of the

square cylinder. In the wake, the relatively large low-

pressure region can be associated to the formation of a Von

Kármán vortex, which is more clearly visible when con-

sidering phase-averaged results (see e.g. van Oudheusden

et al. 2005; de Kat et al. 2010).

Figure 7 shows pressure signal time series extracted

from the pressure fields derived from stereo-PIV using the

Eulerian approach compared to the pressure transducer

signals. The signals for the side-wall (Fig. 7, top) are in

good agreement, whereas the signals for the base-wall (Fig.

7, bottom) show a fair agreement. To quantify the agree-

ment between the signals and to investigate the effects of

spatial and temporal resolution, the mean and RMS

responses as well as the cross-correlation values with

respect to the pressure transducer signal are determined and

shown in Figs. 8 and 9 for the side and base-wall,

respectively. As a comparative reference, values deter-

mined from pressure transducers on either side of the PIV

domain are indicated by grey lines. As the two transducers

do not produce entirely identical signals, the mean and

RMS responses of these transducers are compared with

each other, taking each as the reference for the other, which

results in two values for the mean and RMS response and

one for the correlation value.

Figure 8a, c, and e show the influence of the spatial reso-

lution on the side-wall pressure signal obtained from stereo-

PIV. The mean response is within 5% for all WS and OF. The

RMS response together with the temporal correlation coeffi-

cient show that the larger WS are modulating the signal,

reducing the temporal correlation coefficient to below 0.95. For

the higher spatial resolutions (small WS), there is no difference

between the 50 and 75% OF. For resolutions higher than

WS/D & 0.1, there is little change, this is in line with the size of

the structures observed next to the side of the square cylinder,

which are of order 0.1 D. No apparent difference between the

Eulerian and Lagrangian approach can be distinguished.

Figure 8b, d, and f show the influence of the temporal

resolution on the side-wall pressure signal from stereo-PIV.

The Eulerian approach shows almost a constant response

across the entire range covered, whereas the Lagrangian

approach drops off at DtU=D � 0:2: The results for the

Eulerian approach agree with the findings from the

assessment on the synthetic flow field, and there is no sign

of the limit estimated in Eq. 13, since there are no vortices

moving along or across boundaries near the side-wall

pressure transducer location. The vortex turnover time was

estimated to verify to what extent the current results agree

with the findings from the assessment on the synthetic flow

field and the theoretical estimate in Eq. 14. The structures

next to the side of the square cylinder (Fig. 6 shows

two structures that are stronger than average) have an

average maximum vorticity of around 30 U/D, resulting in

a vortex turnover time (assuming a Gaussian vortex) of

DtU=D � 0:3, which shows that the drop off observed is in

Fig. 6 Example of the stereo-PIV results. Each sixth vector in x-

direction is shown. a Vorticity field. b Pressure field
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Fig. 7 Pressure signal time-series from stereo-PIV. The pressure

signal from PIV is shown in red. The pressure transducer signal is

shown in black. Top side-wall signals. Bottom base-wall signals. Left
full time series. Right 0.1 s subset of the time series
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line with what is expected from the assessment on the

synthetic flow field and the theoretical considerations.

Figure 9a, c, and e show the influence of the spatial

resolution on the base-wall pressure signal from stereo-

PIV. The mean response converges to approximately a

10% difference for all OF for WS = 16 pix. The RMS

response also converges to similar values for all OF, but

overestimating the RMS by 50%. The temporal correlation

coefficients are all around a value of 0.6. The structures

observed next to the base of the square cylinder go down

to sizes of order 0.05 D, which would explain the

mean and RMS response to be similar for all OF for

WS/D \0.05.

Figure 9b, d, and f show the influence of the temporal

resolution on the base-wall pressure signal from stereo-

PIV. The mean response for the Eulerian approach is

almost constant across the entire range covered, whereas

the RMS response and temporal correlation coefficient
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Fig. 8 Spacial and temporal

influences on the side-wall

pressure signal from stereo-PIV.

Unless indicated otherwise,

settings are as listed in Table 2.

a Mean response with spatial

resolution. b Mean response

with temporal resolution.

c RMS response with spatial

resolution. d RMS response

with temporal resolution.

e Temporal correlation

coefficient with spatial

resolution. f Temporal

correlation coefficient with

temporal resolution
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show a departure at DtU=D � 3: The shedding frequency

gives us two vortices per cycle (one clockwise and one

counter-clockwise) resulting in DtU=D ¼ 1=ð2StÞ � 4,

which means that the small vortices seem to have no effect

on the Eulerian approach, whereas the large Von Kármán

shedding does. The results for the Lagrangian approach

drop off at DtU=D � 0:3: The structures next to the base of

the square cylinder (see Fig. 6) have an average maximum

vorticity of around 15U/D, resulting in a vortex turnover

time (assuming a Gaussian vortex) of DtU=D � 0:6, which

shows the drop off observed is again in line with the

assessment on the synthetic flow field and the theoretical

considerations.

The results from stereo-PIV for the base show some other

more subtle variations, but the fact that the flow is 3D in the

wake makes it impossible to make further statements about the

performance without including the out-of-plane terms.

4.3.2 Tomo-PIV

The results for the base-wall pressure signal from stereo-

PIV lack the full 3D information needed for proper
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Fig. 9 Spacial and temporal

influences on the base-wall

pressure signal from stereo-PIV.

Unless indicated otherwise,

settings are as listed in Table 2.

a Mean response with spatial

resolution. b Mean response

with temporal resolution.

c RMS response with spatial

resolution. d RMS response

with temporal resolution.

e Temporal correlation

coefficient with spatial

resolution. f Temporal

correlation coefficient with

temporal resolution
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pressure determination in a 3D flow. To assess the effect of

the omission of the 3D terms, tomo-PIV experiments were

performed. Since the main difference between the Eulerian

and Lagrangian approach seems be related to the temporal

resolution, we focus on one combination of interrogation

volume (3D equivalent of WS) and OF (16 9 16 9 16

pixels and 50% OF) and only investigate the influence of

temporal resolution. Figure 10 shows an example of the

results from tomo-PIV. Isosurfaces indicate the out-of-

plane and in-plane vorticity. Together with the vectors that

are plotted in 3D, they give a good indication of the 3D

nature of the flow in the wake. The mid-plane is colour-

flooded with the corresponding pressure field. The low-

pressure regions are located near the regions of high in-plane

and/or out-of-plane vorticity, showing that the pressure field is

influenced by the 3D nature of the flow.

Figure 11 shows the pressure signal time series from

tomo-PIV using the Eulerian approach compared with the

pressure transducer that is depicted in Fig. 10. Both results

with input of the full 3D information (Fig. 11, top) and a

2D subset (Fig. 11, bottom) of the tomo-PIV data are

shown. The difference between these results indicates the

influence of adding or omitting the extra 3D information.

They both seem to have a good agreement with the pres-

sure transducer signal, where the results with the 3D input

seem to be in better agreement. To quantitatively assess the

performance of pressure determination and to compare

different methods, the mean response, the RMS response,

and the temporal correlation coefficients are determined for

different time separations, Dt, and shown in Fig. 12. Due to

out-of-plane motion in combination with a limited thick-

ness of the volume, only the smallest time separation gave

results for the 3D Lagrangian approach. Even for this case,

the pressure gradient at some points could not be deter-

mined, i.e. the fluid path could not be reconstructed due to

large values of the out-of-plane velocity. If larger time

separations are needed, the volume thickness should be

increased.

The results for the base-wall pressure signal for 2D input

show the same trends as the results from stereo-PIV (cf.

Fig. 9). The main difference is in the values of the

responses. The results of the 2D input from tomo-PIV are

better than the results from stereo-PIV with values under

5% for the mean response (10% for stereo-PIV), 20–30%

difference for the RMS response (50% for stereo-PIV) and

a cross-correlation value of up to 0.7 (0.65 for stereo-PIV).

This improvement suggests that tomo-PIV is better than

stereo-PIV at capturing the in-plane velocity components

in 3D flow. A possible explanation for this improvement is

that tomo-PIV can also adapt (as it is an iterative process)

to an out-of-plane gradient, whereas stereo-PIV (and planar

PIV as well) can only adapt to the in-plane gradient.

Another possible factor is the error introduced by

perspective in stereo-PIV, which becomes worse for small

ratios of the WS with the laser light sheet thickness (see

Raffel et al. 2007, in the current study a WS of 16 9 16

pixels corresponds to a ratio of approximately 1). The 2D

Lagrangian approach drops off at DtU=D � 0:3: The

results for the Eulerian approach show an increase in RMS

response value similar to the noise response with increas-

ing advective velocity as shown in Fig. 4e.

The most interesting difference between the 2D and 3D

input results can be seen in the temporal correlation coef-

ficients, Fig. 12c. From DtU=D � 0:4 and higher temporal

resolutions (smaller Dt) the 3D input shows a significant

increase in temporal correlation coefficient over the 2D

Fig. 10 Example of the tomo-PIV results. Isosurfaces of out-of-plane

vorticity are shown in light grey, xz = 15D/U. Isosurfaces of in-plane

vorticity are shown in dark grey,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ x2
y

q
¼ 20D=U: 3D vectors

are shown in the plane where pressure is determined
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Fig. 11 Base-wall pressure signal time series from Tomo-PIV,

Eulerian approach. The pressure signal from PIV is shown in red.

The pressure transducer signal is shown in black. Top 3D input.

Bottom 2D input. Left full time series. Right 0.1 s subset of the time

series
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input. Also, the Lagrangian approach shows the same increase

for the single case where the 3D results could be determined.

This increase in correlation can be explained by the fact that

the temporal resolution is now sufficient to describe the

motion of smaller 3D structures in the wake, which results in a

better correlation for the 3D input, but a worse correlation for

the 2D input. For the 2D input, the partial description of the

small 3D structures is experienced as noise.

4.3.3 Spectral assessment

To assess the range of frequencies that can be captured

with pressure determination, power spectral density of the

side-wall and base-wall pressure signals obtained from

stereo-PIV and tomo-PIV, respectively, (using the Eulerian

approach) are determined for the main test cases (see

Table 2) and shown in Fig. 13, top) alongside with the

power spectral density of the corresponding pressure

transducer signal. The dynamic correlation between the

PIV and corresponding pressure transducer signals are

shown in Fig. 13, bottom). The side-wall pressure shows a

pronounced peak at the shedding frequency (20 Hz), while

the base pressure displays a slightly less pronounced peak

at double the shedding frequency. The stereo-PIV power

spectral density for the side-wall shows an excellent

agreement up to approximately 80 Hz where the pressure

from PIV spectrum departs abruptly from that of the

pressure transducer. The dynamic correlation also shows an

abrupt drop from near unity to zero in the range 50–70 Hz.

This abrupt difference in amplitude (energy) and correla-

tion can be attributed to the small 3D component in the

shear layer. De Kat et al. (2009a) show that even though

the flow along the side of the cylinder is predominantly 2D,

the shear layer has significant 3D fluctuations near the

trailing edge of the model, which are caused by the shear

layer undergoing transition. The shear layer has a fre-

quency in the range of 102–103 Hz, which coincides with

the region where the two spectra differ. The tomo-PIV

power spectral density for the base-wall show an excellent

agreement up to 200–300 Hz. The dynamic correlation

shows that there is good correlation between the signals

before it drops to 0 around 200 Hz. The small differences

in the low frequency range can be ascribed to the limited

number of cycles to get a good converged spectrum at these

frequencies.

4.4 Discussion

Although the PIV measurements were not capable to cap-

ture all the structures in the flow due to the limitation in

spatial resolution, the results support the guidelines given

in Sect. 3.

With respect to the spatial resolution, good results

(mean response within 5%, RMS response within 10% and

the temporal correlation coefficient [0.9) are obtained for

WS/D \0.2, see the experimental result in Fig. 8a, c, and

e). The size of the large flow structure along the side of the

cylinder can be approximated by the section dimension,

kx& D, and the size of the flow structure in the test on

the synthetic flow field can be approximated by twice the

vortex core radius, kx& 2rc. Then, the results from

the theoretical test in Sect. 3 give a peak response of 0.9
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tomo-PIV. Unless indicated otherwise, settings are as listed in
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for WS/kx & 0.25. This suggests that for good pressure

results from PIV, there need to be at least four to five WS

covering the flow structure.

The spectral results for the base-wall pressure signal

from tomo-PIV show a loss of coherence and a change of

spectral power for fflow [200–300 Hz. This corresponds to

facq/fflow [13.5–9, which is in good agreement with the

requirement on the temporal resolution, facq/fflow [10.

For the current flow problem, where the advective influ-

ences are small compared to the strength of the vortices, the

restrictions on the Lagrangian approach (reconstruction of

the fluid path) were found to be more limiting than the

restrictions on the Eulerian approach (accurate estimation of

the acceleration, especially near the domain edges).

The differences observed between the Eulerian approach,

Lagrangian approach, and the reference pressure are due to

influences of 3D flow (for planar measurements) and spatial

and temporal resolution, not due to measurement noise.

Estimating Ua and Vp to be in the order of the free-stream

velocity, Uð� 2WS=DtÞ, then, based on the analysis in Sect. 3

and ru/U & 1.5%, the effect of noise is expected to be lower

than 2%, which is well below the differences found due to the

spatial and temporal resolution (and 3D flow).

5 Conclusions

The operating principles of obtaining pressure from PIV

using an Eulerian and Lagrangian approach have been

described together with theoretical considerations on its

performance. These considerations were found to be in line

with the result from assessment on a synthetic flow field,

consisting of an advecting vortex. From these results,

guidelines are proposed considering the temporal and

spatial resolution needed to correctly capture the instanta-

neous pressure from PIV. It was found for both methods

that the WS needs to be at least 5 times smaller than the

flow structure (kx). For both methods, it holds that the

acquisition frequency needs to be 10 times higher than the

frequency in the flow, where this frequency for the Eulerian

approach is related to the Eulerian time scales and for the

Lagrangian approach to the Lagrangian time scales.

Stereo-PIV and thin-volume tomo-PIV measurements,

considering the flow around a square cylinder, were per-

formed to provide experimental verification, with surface-

transducer pressure data for validation. Subsequent analysis of

the results showed that accurate pressure determination from

PIV is possible in both 2 and 3D flows. The experimental

results support the guidelines derived from the theoretical

considerations and the assessment on a synthetic flow field.

The pressure at the side-wall of the square cylinder could be

determined from stereo-PIV data with a difference with

respect to the pressure transducers of 5% in the mean, 10% on

RMS, and with a correlation value of 0.98. The pressure at the

base-wall of the square cylinder could be determined from

tomo-PIV data with a difference with respect to the pressure

transducers of 2% in the mean, 20% on RMS, and with a

correlation value of 0.8 (the correlation value between the

pressure transducers on either side of the volume was also 0.8).
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