13 research outputs found

    Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke

    Get PDF
    Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke

    Identification of Ischemic Regions in a Rat Model of Stroke

    Get PDF
    Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia.Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed.TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study

    Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain - influence of levodopa treatment

    No full text
    Background: Cerebral ischemia activates both the innate and the adaptive immune response, the latter being activated within days after the stroke onset and triggered by the recognition of foreign antigens. Methods: In this study we have investigated the phenotype of antigen presenting cells and the levels of associated major histocompatibility complex class II (MHC II) molecules in the postischemic brain after transient occlusion of the middle cerebral artery (tMCAO) followed by levodopa/benserazide treatment. Male Sprague Dawley rats were subjected to tMCAO for 105 minutes and received levodopa (20 mg/kg)/benserazide (15 mg/kg) for 5 days starting on day 2 after tMCAO. Thereafter, immune cells were isolated from the ischemic and contralateral hemisphere and analyzed by flow cytometry. Complementarily, the spatiotemporal profile of MHC II-positive (MHC II+) cells was studied in the ischemic brain during the first 30 days after tMCAO; protein levels of MHC II and the levels of inflammation associated cytokines were determined in the ischemic hemisphere. Results: We found that microglia/macrophages represent the main MHC II expressing cell in the postischemic brain one week after tMCAO. No differences in absolute cell numbers were found between levodopa/benserazide and vehicle-treated animals. In contrast, MHC II protein levels were significant downregulated in the ischemic infarct core by levodopa/benserazide treatment. This reduction was accompanied by reduced levels of IFN-gamma, TNF-alpha and IL-4 in the ischemic hemisphere. In the contralateral hemisphere, we exclusively detected MHC II+ cells in the corpus callosum. Interestingly, the number of cells was increased by treatment with levodopa/benserazide independent from the infarct size 14 days after tMCAO. Conclusions: Results suggest that dopamine signaling is involved in the adaptive immune response after stroke and involves microglia/macrophages

    The Right Rodent for the Job: Infarct Variability Between Strains and Its Impact on Logistics of Experimental Animal Studies

    No full text
    This chapter will discuss the variability in infarct size after ischaemic stroke in rat models of stroke, drawing example from our experience with the thread occlusion model. We will describe how the neuroprotective effect of a novel treatment diminished over the course of our testing, with post hoc analysis revealing wide variability in infarct volume in the experiments where the treatment was not shown to be protective. Application of various inclusion criteria failed to reduce variability, only reducing the number of animals. We then compared infarct variability in the Sprague-Dawley strain to other strains of rat used in our laboratory. The spontaneously hypertensive rat proved to be the most consistent strain of rat, having the least variable infarct volume, and stroke being successfully induced in all animals. The ability to include more animals in experimental groups is advantageous in terms of the absolute number of animals used, the time an experiment will take to complete and the cost of preclinical research

    Validation of a simple and inexpensive method for the quantitation of infarct in the rat brain

    No full text
    A gravimetric method was evaluated as a simple, sensitive, reproducible, low-cost alternative to quantify the extent of brain infarct after occlusion of the medial cerebral artery in rats. In ether-anesthetized rats, the left medial cerebral artery was occluded for 1, 1.5 or 2 h by inserting a 4-0 nylon monofilament suture into the internal carotid artery. Twenty-four hours later, the brains were processed for histochemical triphenyltetrazolium chloride (TTC) staining and quantitation of the schemic infarct. In each TTC-stained brain section, the ischemic tissue was dissected with a scalpel and fixed in 10% formalin at 0ºC until its total mass could be estimated. The mass (mg) of the ischemic tissue was weighed on an analytical balance and compared to its volume (mm³), estimated either by plethysmometry using platinum electrodes or by computer-assisted image analysis. Infarct size as measured by the weighing method (mg), and reported as a percent (%) of the affected (left) hemisphere, correlated closely with volume (mm³, also reported as %) estimated by computerized image analysis (r = 0.88; P < 0.001; N = 10) or by plethysmography (r = 0.97-0.98; P < 0.0001; N = 41). This degree of correlation was maintained between different experimenters. The method was also sensitive for detecting the effect of different ischemia durations on infarct size (P < 0.005; N = 23), and the effect of drug treatments in reducing the extent of brain damage (P < 0.005; N = 24). The data suggest that, in addition to being simple and low cost, the weighing method is a reliable alternative for quantifying brain infarct in animal models of stroke
    corecore