75 research outputs found

    Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

    Get PDF
    Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared

    Clara cell adhesion and migration to extracellular matrix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clara cells are the epithelial progenitor cell of the small airways, a location known to be important in many lung disorders. Although migration of alveolar type II and bronchiolar ciliated epithelial cells has been examined, the migratory response of Clara cells has received little attention.</p> <p>Methods</p> <p>Using a modification of existing procedures for Clara cell isolation, we examined mouse Clara cells and a mouse Clara-like cell line (C22) for adhesion to and migration toward matrix substrate gradients, to establish the nature and integrin dependence of migration in Clara cells.</p> <p>Results</p> <p>We observed that Clara cells adhere preferentially to fibronectin (Fn) and type I collagen (Col I) similar to previous reports. Migration of Clara cells can be directed by a fixed gradient of matrix substrates (haptotaxis). Migration of the C22 cell line was similar to the Clara cells so integrin dependence of migration was evaluated with this cell line. As determined by competition with an RGD containing-peptide, migration of C22 cells toward Fn and laminin (Lm) 511 (formerly laminin 10) was significantly RGD integrin dependent, but migration toward Col I was RGD integrin independent, suggesting that Clara cells utilize different receptors for these different matrices.</p> <p>Conclusion</p> <p>Thus, Clara cells resemble alveolar type II and bronchiolar ciliated epithelial cells by showing integrin mediated pro-migratory changes to extracellular matrix components that are present in tissues after injury.</p

    Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.</p> <p>Methods</p> <p>C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.</p> <p>Results</p> <p>BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.</p> <p>Conclusions</p> <p>Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.</p

    Human Embryonic Stem Cells Differentiated to Lung Lineage-Specific Cells Ameliorate Pulmonary Fibrosis in a Xenograft Transplant Mouse Model

    Get PDF
    Our aim was to differentiate human (h) embryonic stem (ES) cells into lung epithelial lineage-specific cells [i.e., alveolar epithelial type I (AEI) and type II (AEII) cells and Clara cells] as the first step in the development of cell-based strategies to repair lung injury in the bleomycin mouse model of idiopathic pulmonary fibrosis (IPF). A heterogeneous population of non-ciliated lung lineage-specific cells was derived by a novel method of embryoid body (EB) differentiation. This differentiated human cell population was used to modulate the profibrotic phenotype in transplanted animals.Omission or inclusion of one or more components in the differentiation medium skewed differentiation of H7 hES cells into varying proportions of AEI, AEII, and Clara cells. ICG-001, a small molecule inhibitor of Wnt/β-catenin/Creb-binding protein (CBP) transcription, changed marker expression of the differentiated ES cells from an AEII-like phenotype to a predominantly AEI-like phenotype. The differentiated cells were used in xenograft transplantation studies in bleomycin-treated Rag2γC(-/-) mice. Human cells were detected in lungs of the transplanted groups receiving differentiated ES cells treated with or without ICG-001. The increased lung collagen content found in bleomycin-treated mice receiving saline was significantly reduced by transplantation with the lung-lineage specific epithelial cells differentiated from ES cells. A significant increase in progenitor number was observed in the airways of bleomycin-treated mice after transplantation of differentiated hES cells.This study indicates that ES cell-based therapy may be a powerful novel approach to ameliorate lung fibrosis

    Down-Regulation of the Canonical Wnt β-Catenin Pathway in the Airway Epithelium of Healthy Smokers and Smokers with COPD

    Get PDF
    Background: The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state. Methodology/Principal Findings: Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators b-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro. Conclusions/Significance: Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway ma

    Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy

    Get PDF
    This study describes a novel type of interstitial (stromal) cell — telocytes (TCs) — in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles

    Clinical potentials of human pluripotent stem cells in lung diseases

    No full text
    corecore