16 research outputs found

    Structural diversity in binary nanoparticle superlattices

    Full text link
    Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures - that is, 'bottom up' assembly - is a theme that runs through chemistry, biology and material science. Bacteria(1), macromolecules(2) and nanoparticles(3) can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)(3-7) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation(3,8,9), and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres(10,11). Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62551/1/nature04414.pd

    Crystal Growth of Thiol-Stabilized Gold Nanoparticles by Heat-Induced Coalescence

    Get PDF
    A monolayer of dodecanethiol-stabilized gold nanoparticles changed into two-dimensional and three-dimensional self-organized structures by annealing at 323 K. Subsequent crystal growth of gold nanoparticles occurred. Thiol molecules, although chemisorbed, form relatively unstable bonds with the gold surface; a few thiols desorbed from the surface and oxidized to disulfides at 323 K, because the interaction energy between thiol macromolecules is larger than that between a thiol and a nanoparticle. The gold nanoparticles approached each other and grew into large single or twinned crystals because of the van der Waals attraction and the heat generated by the exothermic formation of disulfides

    Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach

    Get PDF
    This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres) can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd) with desirable functional properties

    Micelles versus ribbons : how congeners drive the self-assembly of acidic sophorolipid biosurfactants

    No full text
    Sophorolipids (SLs), a class of microbially derived biosurfactants, are reported by different research groups to have different self-assembled structures (either micelles or giant ribbons) under the same conditions. Here we explore the reasons behind these contradictory results and attribute these differences to the role of specific congeners that are present in minute quantities. We show that a sample composed of a majority of oleic acid (C18:1) sophorolipid in the presence of only 0.5% (or more) of congeners with stearic acid (C18:0) or linoleic acid (C18:2) results in the formation of micelles that are stable over long periods of time. Conversely, the presence of only 10 to 15% of congeners with a stearic acid chain gives fibrillar structures instead of micelles. To study the mechanisms responsible, oleic acid SLs devoid of any other congeners were prepared. Very interestingly, this sample can self-assemble into either micelles or fibers depending on minute modifications to the self-assembly conditions. The findings are supported by light scattering, small-angle X-ray scattering, transmission electron microscopy under cryogenic conditions, high-pressure liquid chromatography, and NMR spectroscopy
    corecore