42 research outputs found
Unification of Radio Galaxies and Their Accretion/Jet Properties
We investigate the relation between black hole mass, M_bh, and jet power,
Q_jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are
separated from radio quasars by the FR I/II dividing line in M_bh-Q_jet plane,
which strongly supports the unification scheme of FR I/BL Lac and FR II/radio
quasar. The Eddington ratio distribution of BL Lacs and radio quasars exhibits
a bimodal nature with a rough division at L_bol/L_Edd~0.01, which imply that
they may have different accretion modes. We calculate the jet power extracted
from advection dominated accretion flow (ADAF), and find that it require
dimensionless angular momentum of black hole j~0.9-0.99 to reproduce the
dividing line between FR I/II or BL Lac/radio quasar if dimensionless accretion
rate mdot=0.01 is adopted, which is required by above bimodal distribution of
Eddington ratios. Our results suggest that black holes in radio galaxies are
rapidly spinning.Comment: To appear JAA in Jun
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
