6,183 research outputs found
Spinning test particles and clock effect in Kerr spacetime
We study the motion of spinning test particles in Kerr spacetime using the
Mathisson-Papapetrou equations; we impose different supplementary conditions
among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze
their physical implications in order to decide which is the most natural to
use. We find that if the particle's center of mass world line, namely the one
chosen for the multipole reduction, is a spatially circular orbit (sustained by
the tidal forces due to the spin) then the generalized momentum of the test
particle is also tangent to a spatially circular orbit intersecting the center
of mass line at a point. There exists one such orbit for each point of the
center of mass line where they intersect; although fictitious, these orbits are
essential to define the properties of the spinning particle along its physical
motion. In the small spin limit, the particle's orbit is almost a geodesic and
the difference of its angular velocity with respect to the geodesic value can
be of arbitrary sign, corresponding to the spin-up and spin-down possible
alignment along the z-axis. We also find that the choice of the supplementary
conditions leads to clock effects of substantially different magnitude. In
fact, for co-rotating and counter-rotating particles having the same spin
magnitude and orientation, the gravitomagnetic clock effect induced by the
background metric can be magnified or inhibited and even suppressed by the
contribution of the individual particle's spin. Quite surprisingly this
contribution can be itself made vanishing leading to a clock effect
undistiguishable from that of non spinning particles. The results of our
analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum
Gravity, 200
Energy and angular momentum of general 4-dimensional stationary axi-symmetric spacetime in teleparallel geometry
We derive an exact general axi-symmetric solution of the coupled
gravitational and electromagnetic fields in the tetrad theory of gravitation.
The solution is characterized by four parameters (mass), (charge),
(rotation) and (NUT). We then, calculate the total exterior energy using
the energy-momentum complex given by M{\o}ller in the framework of
Weitzenbck geometry. We show that the energy contained in a sphere is
shared by its interior as well as exterior. We also calculate the components of
the spatial momentum to evaluate the angular momentum distribution. We show
that the only non-vanishing components of the angular momentum is in the Z
direction.Comment: Latex. Will appear in IJMP
Recommended from our members
Equivalent Mid-Term Results of Open vs Endoscopic Gluteal Tendon Tear Repair Using Suture Anchors in Forty-Five Patients.
BackgroundLittle is known about the relative efficacy of open (OGR) vs endoscopic (EGR) gluteal tendon repair of gluteal tendon tears in minimizing pain and restoring function. Our aim is to compare these 2 surgical techniques and quantify their impact on clinical outcomes.MethodsAll patients undergoing gluteal tendon tear repair at our institution between 2015 and 2018 were retrospectively reviewed. Pain scores, limp, hip abduction strength, and the use of analgesics were recorded preoperatively and at last follow-up. The Hip disability and Osteoarthritis Outcome Score Junior and Harris Hip Score Section1 were obtained at last follow-up. Fatty degeneration was quantified using the Goutallier-Fuchs Classification (GFC). Statistical analysis was conducted using one-way analysis of variance and t-tests.ResultsForty-five patients (mean age 66, 87% females) met inclusion criteria. Average follow-up was 20.3 months. None of the 10 patients (22%) undergoing EGR had prior surgery. Of 35 patients (78%) undergoing OGR, 12 (27%) had prior hip replacement (75% via lateral approach). The OGRs had more patients with GFC ≥2 (50% vs 11%, P = .02) and used more anchors (P = .03). Both groups showed statistical improvement (P ≤ .01) for all outcomes measured. GFC >2 was independently associated with a worst limp and Harris Hip Score Section 1 score (P = .05). EGR had a statistically higher opioid use reduction (P < .05) than OGR. Other comparisons between EGR and OGR did not reach statistical significance.ConclusionIn this series, open vs endoscopic operative approach did not impact clinical outcomes. More complex tears were treated open and with more anchors. Fatty degeneration adversely impacted outcomes. Although further evaluation of the efficacy of EGR in complex tears is indicated, both approaches can be used successfully
Designing Bandwidth-Efficient Stabilizing Control Servers
Guaranteeing stability of control applications in
embedded systems, or cyber-physical systems, is perhaps the
alpha and omega of implementing such applications. However,
as opposed to the classical real-time systems where often the
acceptance criterion is meeting the deadline, control applications do not primarily enforce hard deadlines. In the case
of control applications, stability is considered to be the main
design criterion and can be expressed in terms of the amount
of delay and jitter a control application can tolerate before
instability. Therefore, new design and analysis techniques are
required for embedded control systems.
In this paper, the analysis and design of such systems
considering server-based resource reservation mechanism are
addressed. The benefits of employing servers are manifold: (1)
providing a compositional framework, (2) protection against
other tasks misbehaviors, and (3) systematic bandwidth assignment. We propose a methodology for designing bandwidth-efficient servers to stabilize control tasks
Spinning test particles and clock effect in Schwarzschild spacetime
We study the behaviour of spinning test particles in the Schwarzschild
spacetime. Using Mathisson-Papapetrou equations of motion we confine our
attention to spatially circular orbits and search for observable effects which
could eventually discriminate among the standard supplementary conditions
namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the
world line chosen for the multipole reduction and whose unit tangent we denote
as is a circular orbit then also the generalized momentum of the
spinning test particle is tangent to a circular orbit even though and
are not parallel four-vectors. These orbits are shown to exist because the spin
induced tidal forces provide the required acceleration no matter what
supplementary condition we select. Of course, in the limit of a small spin the
particle's orbit is close of being a circular geodesic and the (small)
deviation of the angular velocities from the geodesic values can be of an
arbitrary sign, corresponding to the possible spin-up and spin-down alignment
to the z-axis. When two spinning particles orbit around a gravitating source in
opposite directions, they make one loop with respect to a given static observer
with different arrival times. This difference is termed clock effect. We find
that a nonzero gravitomagnetic clock effect appears for oppositely orbiting
both spin-up or spin-down particles even in the Schwarzschild spacetime. This
allows us to establish a formal analogy with the case of (spin-less) geodesics
on the equatorial plane of the Kerr spacetime. This result can be verified
experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum
gravity, 200
Electromagnetic waves in gravitational wave spacetimes
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailled examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007)
- …