13 research outputs found

    The autoregressive neural network architecture of the Boltzmann distribution of pairwise interacting spins systems

    Full text link
    Generative Autoregressive Neural Networks (ARNN) have recently demonstrated exceptional results in image and language generation tasks, contributing to the growing popularity of generative models in both scientific and commercial applications. This work presents a physical interpretation of the ARNNs by reformulating the Boltzmann distribution of binary pairwise interacting systems into autoregressive form. The resulting ARNN architecture has weights and biases of its first layer corresponding to the Hamiltonian's couplings and external fields, featuring widely used structures like the residual connections and a recurrent architecture with clear physical meanings. However, the exponential growth, with system size, of the number of parameters of the hidden layers makes its direct application unfeasible. Nevertheless, its architecture's explicit formulation allows using statistical physics techniques to derive new ARNNs for specific systems. As examples, new effective ARNN architectures are derived from two well-known mean-field systems, the Curie-Weiss and Sherrington-Kirkpatrick models, showing superior performances in approximating the Boltzmann distributions of the corresponding physics model than other commonly used ARNNs architectures. The connection established between the physics of the system and the ARNN architecture provides a way to derive new neural network architectures for different interacting systems and interpret existing ones from a physical perspective.Comment: 10 pages, 6 figure plus the Supplementary Informatio

    On the performance of a cavity method based algorithm for the Prize-Collecting Steiner Tree Problem on graphs

    Get PDF
    We study the behavior of an algorithm derived from the cavity method for the Prize-Collecting Steiner Tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks networks and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the DHEA solver, a Branch and Cut Linear/Integer Programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two post-processing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases

    General scores for accessibility and inequality measures in urban areas

    Get PDF
    In the last decades, the acceleration of urban growth has led to an unprecedented level of urban interactions and interdependence. This situation calls for a significant effort among the scientific community to come up with engaging and meaningful visualizations and accessible scenario simulation engines. The present paper gives a contribution in this direction by providing general methods to evaluate accessibility in cities based on public transportation data. Through the notion of isochrones, the accessibility quantities proposed measure the performance of transport systems at connecting places and people in urban systems. Then we introduce scores rank cities according to their overall accessibility. We highlight significant inequalities in the distribution of these measures across the population, which are found to be strikingly similar across various urban environments. Our results are released through the interactive platform: www.citychrone.org, aimed at providing the community at large with a useful tool for awareness and decision-making

    Cavity algorithms under global constraints: classical and quantum problems

    Get PDF
    The starting point of my thesis work was the study of optimization algorithms based on cavity method. These algorithms have been developed to a high degree of complexity in the last decade and they are also known as message passing algorithms (MPAs). My work has started by a question posed by my supervisor: what links can be found between those different approaches to the same problems? The starting aim of the PhD project was to explore the new ideas and algorithms that could result from a cross-fertilization between different approaches. During the first years we made a long and accurate comparison between different algorithms on a specific COP: the prize collecting Steiner tree problem. Looking to MPAs as an evolution of probability distributions of discrete variables led me to find some possible links with many body quantum physics, where typically we deal with probability amplitudes over discrete variables. In the recent years several results have appeared concerning the extension of the cavity method and message passing technics to quantum context. In 2012 Ramezanpour proposed a method, the variational quantum cavity method (VQCM), for finding approximate ground state wave functions based on a new messages passing algorithm used in stochastic optimization. Ramezanpour and I have extended this approach to find low excited states. In the last year of my Ph.D. I simplify the VQCM using imaginary time evolution operator. Moreover I extend this approach to find finite temperature density matri

    A Bayesian generative neural network framework for epidemic inference problems

    Get PDF
    The reconstruction of missing information in epidemic spreading on contact networks can be essential in the prevention and containment strategies. The identification and warning of infectious but asymptomatic individuals (i.e., contact tracing), the well-known patient-zero problem, or the inference of the infectivity values in structured populations are examples of significant epidemic inference problems. As the number of possible epidemic cascades grows exponentially with the number of individuals involved and only an almost negligible subset of them is compatible with the observations (e.g., medical tests), epidemic inference in contact networks poses incredible computational challenges. We present a new generative neural networks framework that learns to generate the most probable infection cascades compatible with observations. The proposed method achieves better (in some cases, significantly better) or comparable results with existing methods in all problems considered both in synthetic and real contact networks. Given its generality, clear Bayesian and variational nature, the presented framework paves the way to solve fundamental inference epidemic problems with high precision in small and medium-sized real case scenarios such as the spread of infections in workplaces and hospitals

    Epidemic mitigation by statistical inference from contact tracing data

    Full text link
    Contact-tracing is an essential tool in order to mitigate the impact of pandemic such as the COVID-19. In order to achieve efficient and scalable contact-tracing in real time, digital devices can play an important role. While a lot of attention has been paid to analyzing the privacy and ethical risks of the associated mobile applications, so far much less research has been devoted to optimizing their performance and assessing their impact on the mitigation of the epidemic. We develop Bayesian inference methods to estimate the risk that an individual is infected. This inference is based on the list of his recent contacts and their own risk levels, as well as personal information such as results of tests or presence of syndromes. We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic. Our results show that in some range of epidemic spreading (typically when the manual tracing of all contacts of infected people becomes practically impossible, but before the fraction of infected people reaches the scale where a lock-down becomes unavoidable), this inference of individuals at risk could be an efficient way to mitigate the epidemic. Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact. Such communication may be encrypted and anonymized and thus compatible with privacy preserving standards. We conclude that probabilistic risk estimation is capable to enhance performance of digital contact tracing and should be considered in the currently developed mobile applications.Comment: 21 pages, 7 figure

    ocadni/h2arnn: v1.01

    No full text
    First releas

    ocadni/h2arnn: v1.0

    No full text
    Release for Zenodo DOI 1

    CityChrone: an Interactive Platform for Transport Network Analysis and Planning in Urban Systems

    No full text
    Urban systems studies in the last decades have greatly benefited from the digital revolution and the accumulation of a massive amount of data. Extracting useful information from these data calls for new and innovative theoretical and computational approaches. This work presents an open-source, modular, and scalable platform for urban planning and transports network analysis, the CityChrone [citychrone.org]. The platform shows, on interactive maps, measures of performances of public transport in cities. The measures are based on the computation of the travel time distance between a large set of points. Thanks to the high efficiency of the routing algorithm developed, the platform allows users to create new public transports networks and showing the effect on mobility in a small amount of time. A preliminary analysis of the user-generated scenarios is presented. All the source code of the CityChrone platform is open-source, and we employ only open data to ensure the reproducibility of results
    corecore