31 research outputs found

    Effect of different synbiotic administration methods on growth, carcass characteristics, ileum histomorphometry, and blood biochemistry of Cobb-500 broilers

    Get PDF
    Background and Aim: To combat enteric infections and antibiotic resistance in the poultry industry, researchers seek alternatives such as probiotics, prebiotics, and synbiotics as growth promoters. Synbiotics support probiotic growth through the supply of essential nutrients. The study’s objectives were to assess the most effective delivery methods for synbiotics and evaluate their growth, histomorphometric, and hematological impacts on Cobb-500 broilers. Materials and Methods: Two studies, independently conducted, employed a completely randomized design. One hundred and eighty viable eggs in the first trial were assigned to three groups: Control (T1), sterile water (T2), and synbiotic in sterile water (T3). On the 21st day of hatching, hatchability, day-old body weights, and ileum samples for histomorphometric analysis were recorded. In the second trial, out of 500 viable eggs, 200 eggs were fed in ovo with synbiotics (PoultryStar® sol, Biomin Singapore Pte Ltd, Singapore) on 17.5 days and 300 were set aside without in ovo injection. The treatments were control (T1), in water synbiotic (T2), in ovo synbiotic (T3), combination of in ovo synbiotic and synbiotic in feed (T4), and synbiotic in feed only (T5). On 21 and 42 days, blood, ileum, and visceral organ samples were collected for laboratory analysis. Data on weight gain, daily feed intake, and water consumption were recorded for 42 days. Results: The initial experiment’s results revealed a decrease in hatchability, slight weight increase, and significant intestinal morphological changes with the use of an in ovo synbiotic. Applying synbiotic through various methods in the second trial yielded better growth results, lower blood cholesterol, and significantly longer (p < 0.05) villi on 21 days. Conclusion: Using the in ovo method to administer synbiotics lowered hatchability. Use of synbiotics with any method or in combination enhances growth, ileum structure, dressing yield, feed efficiency, and cholesterol levels in blood. Synbiotics enhance gut health and overall performance in broilers when used through diverse approaches

    Reproduction and Fertility of Buffaloes in Nepal

    No full text
    Water buffalo (Bubalus bubalis) in Nepal contributes 57% of the total milk and 36% of the total meat production in the country. The productive efficiency of Nepalese buffaloes is quite low, due mainly to subfertility and infertility. Delayed puberty and prolonged inter-calving intervals, attributed mainly by anestrus due to silent cyclicity and ovarian acyclicity, are the major forms of infertility in Nepalese buffaloes. Moreover, buffaloes in Nepal show a distinct seasonal breeding pattern, with July to December as the active breeding season, and with April to June and January to March as the low and transitional breeding seasons, respectively. Endoparasitic infection and poor nutritional status, which are more severe during the low season, are found to be the major factors causing anestrus and compromising its treatment response in buffaloes. Various hormonal protocols for timed artificial insemination (TAI) have been attempted, with a varying pregnancy outcome. Recently, an integrated technique including anthelmintic treatment, nutritional supplementation and hormone-based fertility management programs for TAI has been developed and implemented successfully. A wider adoption of this technique as a package of practices could be key to improving the reproductive efficiency of buffaloes in Nepal

    Reproduction and Fertility of Buffaloes in Nepal

    No full text
    Water buffalo (Bubalus bubalis) in Nepal contributes 57% of the total milk and 36% of the total meat production in the country. The productive efficiency of Nepalese buffaloes is quite low, due mainly to subfertility and infertility. Delayed puberty and prolonged inter-calving intervals, attributed mainly by anestrus due to silent cyclicity and ovarian acyclicity, are the major forms of infertility in Nepalese buffaloes. Moreover, buffaloes in Nepal show a distinct seasonal breeding pattern, with July to December as the active breeding season, and with April to June and January to March as the low and transitional breeding seasons, respectively. Endoparasitic infection and poor nutritional status, which are more severe during the low season, are found to be the major factors causing anestrus and compromising its treatment response in buffaloes. Various hormonal protocols for timed artificial insemination (TAI) have been attempted, with a varying pregnancy outcome. Recently, an integrated technique including anthelmintic treatment, nutritional supplementation and hormone-based fertility management programs for TAI has been developed and implemented successfully. A wider adoption of this technique as a package of practices could be key to improving the reproductive efficiency of buffaloes in Nepal

    Correction to: Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal

    No full text
    The original article [1] contains errors in author panels and their contributions, errors in both the Methodology and the Results sections, and errors with respect to funding sources. The affected sections of the manuscript and their respective regions of corrected text can be viewed ahead
    corecore