2,627 research outputs found

    Experimental Quantum Teleportation of a Two-Qubit Composite System

    Full text link
    Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with photonic or ionic qubits. Very recently long-distance teleportation and open-destination teleportation have also been realized. Until now, previous experiments have only been able to teleport single qubits. However, since teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2-5, teleportation of a composite system containing two or more qubits has been seen as a long-standing goal in quantum information science. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols such as multi-stage realization of quantum-relay, fault-tolerant quantum computation, universal quantum error-correction and one-way quantum computation.Comment: 16pages, 4 figure

    The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence

    Get PDF
    The origin of the star forming main sequence ( i.e., the relation between star formation rate and stellar mass, globally or on kpc-scales; hereafter SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we show that for star forming spaxels in the main sequence galaxies, the three local quantities, star-formation rate surface density (\sigsfr), stellar mass surface density (\sigsm), and the \h2~mass surface density (\sigh2), are strongly correlated with one another and form a 3D linear (in log) relation with dispersion. In addition to the two well known scaling relations, the resolved SFMS (\sigsfr~ vs. \sigsm) and the Schmidt-Kennicutt relation (\sigsfr~ vs. \sigh2; SK relation), there is a third scaling relation between \sigh2~ and \sigsm, which we refer to as the `molecular gas main sequence' (MGMS). The latter indicates that either the local gas mass traces the gravitational potential set by the local stellar mass or both quantities follow the underlying total mass distributions. The scatter of the resolved SFMS (σ0.25\sigma \sim 0.25 dex) is the largest compared to those of the SK and MGMS relations (σ\sigma \sim 0.2 dex). A Pearson correlation test also indicates that the SK and MGMS relations are more strongly correlated than the resolved SFMS. Our result suggests a scenario in which the resolved SFMS is the least physically fundamental and is the consequence of the combination of the SK and the MGMS relations

    Probing Local Variations of Superconductivity on the Surface of Ba(Fe1-xCox)2As2 Single Crystals

    Full text link
    The spatially resolved electrical transport properties have been studied on the surface of optimally-doped superconducting Ba(Fe1-xCox)2As2 single crystal by using a four-probe scanning tunneling microscopy. While some non-uniform contrast appears near the edge of the cleaved crystal, the scanning electron microscopy (SEM) reveals mostly uniform contrast. For the regions that showed uniform SEM contrast, a sharp superconducting transition at TC = 22.1 K has been observed with a transition width (delta)Tc = 0.2 K. In the non-uniform contrast region, TC is found to vary between 19.6 and 22.2 K with (delta)Tc from 0.3 to 3.2 K. The wavelength dispersive x-ray spectroscopy reveals that Co concentration remains 7.72% in the uniform region, but changes between 7.38% and 7.62% in the non-uniform region. Thus the variations of superconductivity are associated with local compositional change.Comment: 18 pages, 5 figure

    Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    Get PDF
    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base

    Long distance quantum teleportation of qubits from photons at 1300 nm to photons at 1550 nm wavelength

    Full text link
    Elementary 2-dimensional quantum states (qubits) encoded in 1300 nm wavelength photons are teleported onto 1550 nm photons. The use of telecommunication wavelengths enables to take advantage of standard optical fibre and permits to teleport from one lab to a distant one, 55 m away, connected by 2 km of fibre. A teleportation fidelity of 81.2 % is reported. This is large enough to demonstrate the principles of quantum teleportation, in particular that entanglement is exploited. This experiment constitutes a first step towards a quantum repeater.Comment: 7 pages, 5 figures, Extended version of Nature lette

    How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted?

    Get PDF
    Reasoner performance prediction of ontologies in OWL 2 language has been studied so far from different dimensions. One key aspect of these studies has been the prediction of how much time a particular task for a given ontology will consume. Several approaches have adopted different machine learning techniques to predict time consumption of ontologies already. However, these studies focused on capturing general aspects of the ontologies (i.e., mainly the complexity of their TBoxes), while paying little attention to ABox intensive ontologies. To address this issue, in this paper, we propose to improve the representativeness of ontology metrics by developing new metrics which focus on the ABox features of ontologies. Our experiments show that the proposed metrics contribute to overall prediction accuracy for all ontologies in general without causing side-effects

    Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides

    Get PDF
    Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution

    Structural and bonding transformation of Al0.67CrCoCuFeNi high-entropy alloys during quenching

    Get PDF
    Structural and bonding transformation of the Al0.67CrCoFeNi high-entropy alloys (HEA) during&nbsp;quenching&nbsp;is investigated by molecular dynamics simulations. At a high cooling rate, some short-ranged ordered clusters, such as FCC, HCP and BCC&nbsp;crystalline&nbsp;clusters are already present in the almost amorphous HEAs. When the cooling rate decreases, the atoms become packed more orderly and ultimately form a nano-polycrystalline structure dominated by FCC structures. The BCC structures appear only as an intermediate state acting on the course of&nbsp;crystallization, while the HCP structure can be viewed as the precursor of the malposed FCC structure due to the identical first neighbor distances. In liquid HEAs, the low-symmetry and low-coordination bond pairs, either transform to high-symmetry and high-coordination 1551 bond pairs, or transform to 1(5,4)41 bond pairs for FCC structure and 1661 bond pairs for an HCP structure, depending on the cooling rates. This study will contribute to a better understanding of the essential phase change in HEAs.</p
    corecore