5,469 research outputs found
Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential
We calculate the self-consistent response of an axisymmetric galactic disk
perturbed by an elliptical halo potential of harmonic number m = 2, and obtain
the net disk ellipticity. Such a potential is commonly expected to arise due to
a galactic tidal encounter and also during the galaxy formation process. The
self-gravitational potential corresponding to the self-consistent,
non-axisymmetric density response of the disk is obtained by inversion of
Poisson equation for a thin disk. This response potential is shown to oppose
the perturbation potential, because physically the disk self-gravity resists
the imposed potential. This results in a reduction in the net ellipticity of
the perturbation halo potential in the disk plane. The reduction factor
denoting this decrease is independent of the strength of the perturbation
potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of
galaxy parameters. The reduction is negligible at all radii for higher
harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the
Astrophysical Journal, Vol. 542, Oct. 20, 200
Spin-charge separation and localization in one-dimension
We report on measurements of quantum many-body modes in ballistic wires and
their dependence on Coulomb interactions, obtained from tunneling between two
parallel wires in a GaAs/AlGaAs heterostructure while varying electron density.
We observe two spin modes and one charge mode of the coupled wires, and map the
dispersion velocities of the modes down to a critical density, at which
spontaneous localization is observed. Theoretical calculations of the charge
velocity agree well with the data, although they also predict an additional
charge mode that is not observed. The measured spin velocity is found to be
smaller than theoretically predicted.Comment: There are minor textual differences between this version and the
version that has been published in Science (follow the DOI link below to
obtain it). In addition, here we have had to reduce figure quality to save
space on the serve
The Lopsidedness of Present-Day Galaxies: Results from the Sloan Digital Sky Survey
Large-scale asymmetries in the stellar mass distribution in galaxies are
believed to trace non-equilibrium situations in the luminous and/or dark matter
component. These may arise in the aftermath of events like mergers, accretion,
and tidal interactions. These events are key in the evolution of galaxies. In
this paper we quantify the large-scale lopsidedness of light distributions in
25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4
using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution
of light is primarily due to a corresponding lopsidedness in the stellar mass
distribution. Observational effects, such as seeing, Poisson noise, and
inclination, introduce only small errors in lopsidedness for the majority of
this sample. We find that lopsidedness correlates strongly with other basic
galaxy structural parameters: galaxies with low concentration, stellar mass,
and stellar surface mass density tend to be lopsided, while galaxies with high
concentration, mass, and density are not. We find that the strongest and most
fundamental relationship between lopsidedness and the other structural
parameters is with the surface mass density. We also find, in agreement with
previous studies, that lopsidedness tends to increase with radius. Both these
results may be understood as a consequence of several factors. The outer
regions of galaxies and low-density galaxies are more susceptible to tidal
perturbations, and they also have longer dynamical times (so lopsidedness will
last longer). They are also more likely to be affected by any underlying
asymmetries in the dark matter halo.Comment: 42 pages, 13 figures, 3 tables, accepted to Ap
Measuring Fundamental Galactic Parameters with Stellar Tidal Streams and SIM PlanetQuest
Extended halo tidal streams from disrupting Milky Way satellites offer new
opportunities for gauging fundamental Galactic parameters without challenging
observations of the Galactic center. In the roughly spherical Galactic
potential tidal debris from a satellite system is largely confined to a single
plane containing the Galactic center, so accurate distances to stars in the
tidal stream can be used to gauge the Galactic center distance, R_0, given
reasonable projection of the stream orbital pole on the X_GC axis.
Alternatively, a tidal stream with orbital pole near the Y_GC axis, like the
Sagittarius stream, can be used to derive the speed of the Local Standard of
Rest (\Theta_LSR). Modest improvements in current astrometric catalogues might
allow this measurement to be made, but NASA's Space Interferometry Mission (SIM
PlanetQuest) can definitively obtain both R_0 and \Theta_LSR using tidal
streams.Comment: 8 pages, 4 figures, accepted for publication in ApJ Letters (minor
text revisions). Version with high resolution figures available at
http://www.astro.caltech.edu/~drlaw/Papers/GalaxyParameters.pd
Non-singular radiation cosmological models
In this paper we analyse the possibility of constructing singularity-free
inhomogeneous cosmological models with a pure radiation field as matter
content. It is shown that the conditions for regularity are very easy to
implement and therefore there is a huge number of such spacetimes.Comment: 13 pages, LaTex, ws-mpla, to appear in Modern Physics Letters
Localization Transition in a Ballistic Quantum Wire
The many-body wave-function of an interacting one-dimensional electron system
is probed, focusing on the low-density, strong interaction regime. The
properties of the wave-function are determined using tunneling between two
long, clean, parallel quantum wires in a GaAs/AlGaAs heterostructure, allowing
for gate-controlled electron density. As electron density is lowered to a
critical value the many-body state abruptly changes from an extended state with
a well-defined momentum to a localized state with a wide range of momentum
components. The signature of the localized states appears as discrete tunneling
features at resonant gate-voltages, corresponding to the depletion of single
electrons and showing Coulomb-blockade behavior. Typically 5-10 such features
appear, where the one-electron state has a single-lobed momentum distribution,
and the few-electron states have double-lobed distributions with peaks at . A theoretical model suggests that for a small number of particles (N<6),
the observed state is a mixture of ground and thermally excited spin states.Comment: 10 pages, 4 figures, 1 tabl
String Theory in the Penrose Limit of AdS_2 x S^2
The string theory in the Penrose limit of AdS_2 x S^2 is investigated. The
specific Penrose limit is the background known as the Nappi-Witten spacetime,
which is a plane-wave background with an axion field. The string theory on it
is given as the Wess-Zumino-Novikov-Witten (WZNW) model on non-semi-simple
group H_4. It is found that, in the past literature, an important type of
irreducible representations of the corresponding algebra, h_4, were missed. We
present this "new" representations, which have the type of continuous series
representations. All the three types of representations of the previous
literature can be obtained from the "new" representations by setting the
momenta in the theory to special values. Then we realized the affine currents
of the WZNW model in terms of four bosonic free fields and constructed the
spectrum of the theory by acting the negative frequency modes of free fields on
the ground level states in the h_4 continuous series representation. The
spectrum is shown to be free of ghosts, after the Virasoro constraints are
satisfied. In particular we argued that there is no need for constraining one
of the longitudinal momenta to have unitarity. The tachyon vertex operator,
that correspond to a particular state in the ground level of the string
spectrum, is constructed. The operator products of the vertex operator with the
currents and the energy-momentum tensor are shown to have the correct forms,
with the correct conformal weight of the vertex operator.Comment: 30 pages, Latex, no figure
Coherent control of the cooperative branching ratio for nuclear x-ray pumping
Coherent control of nuclear pumping in a three level system driven by x-ray
light is investigated. In single nuclei, the pumping performance is determined
by the branching ratio of the excited state populated by the x-ray pulse. Our
results are based on the observation that in ensembles of nuclei, cooperative
excitation and decay leads to a greatly modified nuclear dynamics, which we
characterize by a time-dependent cooperative branching ratio. We discuss
prospects of steering the x-ray pumping by coherently controlling the
cooperative decay. First, we study an ideal case with purely superradiant decay
and perfect control of the cooperative emission. A numerical analysis of x-ray
pumping in nuclear forward scattering with coherent control of the cooperative
decay via externally applied magnetic fields is presented. Next, we provide an
extended survey of nuclei suitable for our scheme, and propose
proof-of-principle implementations already possible with typical M\"ossbauer
nuclear systems such as . Finally, we discuss the application
of such control techniques to the population or depletion of long-lived nuclear
states.Comment: 11 pages, 8 figures; updated to the published versio
IP Modularity: Profiting from Innovation by Aligning Product Architecture with Intellectual Property
- …