7 research outputs found

    Lack of EEG modifications during prolonged acoustic stimulation in man: a computer analysis.

    No full text

    EFFECTS OF ACUTE INTRAVENOUS ADMINISTRATION OF MET-ENKEPHALIN IN THE RABBIT: A COMPUTER ANALYSIS.

    No full text

    Molecular biomonitoring of a population of nurses handling antineoplastic drugs

    No full text
    Many antincoplastic drugs have been found to have carcinogenic, mutagenic and teratogenic activity and so hospital personnel handling these substances are potentially exposed to health risk. Understanding this risk derived from protracted occupational exposure has great relevance even if the workers normally adopt individual and environmental protective measures. To address this question we have studied the presence of DNA and chromosome damage in a population of nurses employed in Italian oncology units and in matched controls. We used the comet assay to evidence the presence of DNA strand breaks, due to both acute and chronic exposure, and the micronucleus (MN) test, which is a measure of clastogenic and aneugenic events. Furthermore, since the individual response to the exogenous insults may be genetically determined, we studied the possible influence of single nucleotide polymorphism in XRCC1 and XRCC3 DNA repair genes on induced genetic damage. We also considered the effects of confounding factors like smoking, age and gender. The results indicated that the exposed subjects had significantly high levels of genetic damage. Age and gender were associated with increased values in MN, both in control and in exposed groups; the smoking habit affects MN frequency in controls, but not in workers. Furthermore we found that exposed subjects bearing at least one XRCC1 variant allele (399Gln) show higher values of MN. The present data provide the evidence to show that occupational exposure to antineoplastic drugs, even if in safety controlled conditions, represents a serious health risk. Furthermore we have shown that the presence of XRCC1 genetic polymorphism could contribute to increase the genetic damage in susceptible individuals who are occupationally exposed to dangerous substance

    WALK-MAN: A High-Performance Humanoid Platform for Realistic Environments

    No full text
    In this work, we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environment, and demonstrate new skills including powerful manipulation, robust balanced locomotion, high-strength capabilities, and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of series elastic actuator drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance is benefited by both active and passive adaptation, thanks to WALK-MAN actuation that combines customized high-performance modules with tuned torque/velocity curves and transmission elasticity for high-speed adaptation response and motion reactions to disturbances. WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing, and control. The WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready four months before DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion-generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviors synthesized by combining different primitives defining the behavior of the center of gravity, the motion of the hands, legs, and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion-generation framework including the specific motion modules and software architecture is discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of teleoperated or semiautonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DRC in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition

    WALK-MAN Humanoid Platform

    No full text
    In this chapter we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environments and demonstrate new skills including powerful manipulation, robust balanced locomotion, high strength capabilities and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of Series Elastic Actuation (SEA) drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance benefits from both active and passive adaptation thanks to WALK-MAN actuation, which combines customized high performance modules with tuned torque/velocity curves and transmission elasticity for high speed adaptation response and motion reactions to disturbances. The WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with respect to the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing and control. WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready 4 months before the DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviours synthesized by combining different primitives defining the behaviour of the center of gravity, of the hands, legs and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion generation framework including the specific motion modules and software architecture are discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of tele-operated or semi-autonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DARPA Robotics Challenge in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition
    corecore