22 research outputs found

    Plasmon-pole approximation for semiconductor quantum wire electrons

    Full text link
    We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum wire systems than in higher dimensional systems because of severe phase-space restrictions on particle-hole excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as compared with more complete many-body calculations.Comment: 16 pages, RevTex, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Tractable non-local correlation density functionals for flat surfaces and slabs

    Full text link
    A systematic approach for the construction of a density functional for van der Waals interactions that also accounts for saturation effects is described, i.e. one that is applicable at short distances. A very efficient method to calculate the resulting expressions in the case of flat surfaces, a method leading to an order reduction in computational complexity, is presented. Results for the interaction of two parallel jellium slabs are shown to agree with those of a recent RPA calculation (J.F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123 1999). The method is easy to use; its input consists of the electron density of the system, and we show that it can be successfully approximated by the electron densities of the interacting fragments. Results for the surface correlation energy of jellium compare very well with those of other studies. The correlation-interaction energy between two parallel jellia is calculated for all separations d, and substantial saturation effects are predicted.Comment: 10 pages, 6 figure

    Self-consistent calculation of total energies of the electron gas using many-body perturbation theory

    Get PDF
    The performance of many-body perturbation theory for calculating ground-state properties is investigated. We present fully numerical results for the electron gas in three and two dimensions in the framework of the GW approximation. The overall agreement with very accurate Monte Carlo data is excellent, even for those ranges of densities for which the GW approach is often supposed to be unsuitable. The latter seems to be due to the fulfillment of general conservation rules. These results open further prospects for accurate calculations of ground-state properties circumventing the limitations of standard density-functional theory

    Dissociative adsorption of NO upon AI(111): Orientation dependent charge transfer and chemisorption reaction dynamics.

    Get PDF
    In order to clarify the underlying mechanism of the initial oxidation of aluminum, the reaction between a heteronuclear diatomic molecule, nitric oxide, and the Al(111) surface was studied. It was shown that the reaction of NO with aluminum is a two-step process including a change of the orientation of the molecule with respect to the surface

    Density functional theories and self-energy approaches

    Get PDF
    A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom
    corecore