79 research outputs found

    Photoexcited transients in disordered semiconductors: Quantum coherence at very short to intermediate times

    Full text link
    We study theoretically electron transients in semiconductor alloys excited by light pulses shorter than 100 femtoseconds and tuned above the absorption edge during and shortly after the pulse, when disorder scattering is dominant. We use non-equilibrium Green functions employing the field-dependent self-consistent Born approximation. The propagators and the particle correlation function are obtained by a direct numerical solution of the Dyson equations in differential form. For the purely elastic scattering in our model system the solution procedures for the retarded propagator and for the correlation function can be decoupled.The propagator is used as an input in calculating the correlation function. Numerical results combined with a cumulant expansion permit to separate in a consistent fashion the dark and the induced parts of the self-energy. The dark behavior reduces to propagation of strongly damped quasi-particles; the field induced self-energy leads to an additional time non-local coherence. The particle correlation function is formed by a coherent transient and an incoherent back-scattered component. The particle number is conserved only if the field induced coherence is fully incorporated. The transient polarization and the energy balance are also obtained and interpreted.Comment: Accepted for publication in Phys. Rev. B; 37 pages,17 figure

    Saddle Points and Stark Ladders: Exact Calculations of Exciton Spectra in Superlattices

    Full text link
    A new, exact method for calculating excitonic absorption in superlattices is described. It is used to obtain high resolution spectra showing the saddle point exciton feature near the top of the miniband. The evolution of this feature is followed through a series of structures with increasing miniband width. The Stark ladder of peaks produced by an axial electric field is investigated, and it is shown that for weak fields the line shapes are strongly modified by coupling to continuum states, taking the form of Fano resonances. The calculated spectra, when suitably broadened, are found to be in good agreement with experimental results.Comment: 9 pages Revtex v3.0, followed by 4 uuencoded postscript figures, SISSA-CM-94-00

    Metal-insulator transition in EuO

    Full text link
    It is shown that the spectacular metal-insulator transition in Eu-rich EuO can be simulated within an extended Kondo lattice model. The different orders of magnitude of the jump in resistivity in dependence on the concentration of oxygen vacancies as well as the low-temperature resistance minimum in high-resistivity samples are reproduced quantitatively. The huge colossal magnetoresistance (CMR) is calculated and discussed

    Ward identities for disordered metals and superconductors

    Full text link
    This article revisits Ward identities for disordered interacting normal metals and superconductors. It offers a simple derivation based on gauge invariance and recasts the identities in a new form that allows easy analysis of the quasiparticle charge conservation (as e.g. in a normal metal) or non-conservation (as e.g. in a d-wave superconductor).Comment: Discussion of decoherence at T=0 remove

    Non-equilibrium Green's function approach to inhomogeneous quantum many-body systems using the Generalized Kadanoff Baym Ansatz

    Full text link
    In non-equilibrium Green's function calculations the use of the Generalized Kadanoff-Baym Ansatz (GKBA) allows for a simple approximate reconstruction of the two-time Green's function from its time-diagonal value. With this a drastic reduction of the computational needs is achieved in time-dependent calculations, making longer time propagation possible and more complex systems accessible. This paper gives credit to the GKBA that was introduced 25 years ago. After a detailed derivation of the GKBA, we recall its application to homogeneous systems and show how to extend it to strongly correlated, inhomogeneous systems. As a proof of concept, we present results for a 2-electron quantum well, where the correct treatment of the correlated electron dynamics is crucial for the correct description of the equilibrium and dynamic properties

    Approximation of excitonic absorption in disordered systems using a compositional component weighted CPA

    Full text link
    Employing a recently developed technique of component weighted two particle Green's functions in the CPA of a binary substitutional alloy AcB1cA_cB_{1-c} we extend the existing theory of excitons in such media using a contact potential model for the interaction between electrons and holes to an approximation which interpolates correctly between the limits of weak and strong disorder. With our approach we are also able to treat the case where the contact interaction between carriers varies between sites of different types, thus introducing further disorder into the system. Based on this approach we study numerically how the formation of exciton bound states changes as the strengths of the contact potentials associated with either of the two site types are varied through a large range of parameter values.Comment: 27 pages RevTeX (preprint format), 13 Postscript figure file

    Intermediate Valence Model for the Colossal Magnetoresistance in Tl_{2}Mn_{2}O_{7}

    Full text link
    The colossal magnetoresistance exhibited by Tl_{2}Mn_{2}O_{7} is an interesting phenomenon, as it is very similar to that found in perovskite manganese oxides although the compound differs both in its crystalline structure and electronic properties from the manganites. At the same time, other pyrochlore compounds, though sharing the same structure with Tl_{2}Mn_{2}O_{7}, do not exhibit the strong coupling between magnetism and transport properties found in this material. Mostly due to the absence of evidence for significant doping into the Mn-O sublattice, and the tendency of Tl to form conduction bands, the traditional double exchange mechanism mentioned in connection with manganites does not seem suitable to explain the experimental results in this case. We propose a model for Tl_{2}Mn_{2}O_{7} consisting of a lattice of intermediate valence ions fluctuating between two magnetic configurations, representing Mn-3d orbitals, hybridized with a conduction band, which we associate with Tl. This model had been proposed originally for the analysis of intermediate valence Tm compounds. With a simplified treatment of the model we obtain the electronic structure and transport properties of Tl_{2}Mn_{2}O_{7}, with good qualitative agreement to experiments. The presence of a hybridization gap in the density of states seems important to understand the reported Hall data.Comment: 8 pages + 5 postscript fig

    Pressure dependence of the sound velocity in a 2D lattice of Hertz-Mindlin balls: a mean field description

    Full text link
    We study the dependence on the external pressure PP of the velocities vL,Tv_{L,T} of long wavelength sound waves in a confined 2D h.c.p. lattice of 3D elastic frictional balls interacting via one-sided Hertz-Mindlin contact forces, whose diameters exhibit mild dispersion. The presence of an underlying long range order enables us to build an effective medium description which incorporates the radial fluctuations of the contact forces acting on a single site. Due to the non linearity of Hertz elasticity, self-consistency results in a highly non-linear differential equation for the "equation of state" linking the effective stiffness of the array with the applied pressure, from which sound velocities are then obtained. The results are in excellent agreement with existing experimental results and simulations in the high and intermediate pressure regimes. It emerges from the analysis that the departure of vL(P)v_{L}(P) from the ideal P1/6P^{1/6} Hertz behavior must be attributed primarily to the fluctuations of the stress field, rather than to the pressure dependence of the number of contacts

    Parquet approach to nonlocal vertex functions and electrical conductivity of disordered electrons

    Full text link
    A diagrammatic technique for two-particle vertex functions is used to describe systematically the influence of spatial quantum coherence and backscattering effects on transport properties of noninteracting electrons in a random potential. In analogy with many-body theory we construct parquet equations for topologically distinct {\em nonlocal} irreducible vertex functions into which the {\em local} one-particle propagator and two-particle vertex of the coherent-potential approximation (CPA) enter as input. To complete the two-particle parquet equations we use an integral form of the Ward identity and determine the one-particle self-energy from the known irreducible vertex. In this way a conserving approximation with (Herglotz) analytic averaged Green functions is obtained. We use the limit of high spatial dimensions to demonstrate how nonlocal corrections to the d=d=\infty (CPA) solution emerge. The general parquet construction is applied to the calculation of vertex corrections to the electrical conductivity. With the aid of the high-dimensional asymptotics of the nonlocal irreducible vertex in the electron-hole scattering channel we derive a mean-field approximation for the conductivity with vertex corrections. The impact of vertex corrections onto the electronic transport is assessed quantitatively within the proposed mean-field description on a binary alloy.Comment: REVTeX 19 pages, 9 EPS diagrams, 6 PS figure

    On Metal-Insulator Transitions due to Self-Doping

    Full text link
    We investigate the influence of an unoccupied band on the transport properties of a strongly correlated electron system. For that purpose, additional orbitals are coupled to a Hubbard model via hybridization. The filling is one electron per site. Depending on the position of the additional band, both, a metal--to--insulator and an insulator--to--metal transition occur with increasing hybridization. The latter transition from a Mott insulator into a metal via ``self--doping'' was recently proposed to explain the low carrier concentration in Yb4As3\rm Yb_4As_3. We suggest a restrictive parameter regime for this transition making use of exact results in various limits. The predicted absence of the self--doping transition for nested Fermi surfaces is confirmed by means of an unrestricted Hartree--Fock approximation and an exact diagonalization study in one dimension. In the general case metal--insulator phase diagrams are obtained within the slave--boson mean--field and the alloy--analog approximation.Comment: 9 pages, Revtex, 6 postscript figure
    corecore