425 research outputs found
Simulating quantum operations with mixed environments
We study the physical resources required to implement general quantum
operations, and provide new bounds on the minimum possible size which an
environment must be in order to perform certain quantum operations. We prove
that contrary to a previous conjecture, not all quantum operations on a
single-qubit can be implemented with a single-qubit environment, even if that
environment is initially prepared in a mixed state. We show that a mixed
single-qutrit environment is sufficient to implement a special class of
operations, the generalized depolarizing channels.Comment: 4 pages Revtex + 1 fig, pictures at
http://stout.physics.ucla.edu/~smolin/tetrahedron .Several small correction
Block synchronization for quantum information
Locating the boundaries of consecutive blocks of quantum information is a
fundamental building block for advanced quantum computation and quantum
communication systems. We develop a coding theoretic method for properly
locating boundaries of quantum information without relying on external
synchronization when block synchronization is lost. The method also protects
qubits from decoherence in a manner similar to conventional quantum
error-correcting codes, seamlessly achieving synchronization recovery and error
correction. A family of quantum codes that are simultaneously synchronizable
and error-correcting is given through this approach.Comment: 7 pages, no figures, final accepted version for publication in
Physical Review
SIC~POVMs and Clifford groups in prime dimensions
We show that in prime dimensions not equal to three, each group covariant
symmetric informationally complete positive operator valued measure (SIC~POVM)
is covariant with respect to a unique Heisenberg--Weyl (HW) group. Moreover,
the symmetry group of the SIC~POVM is a subgroup of the Clifford group. Hence,
two SIC~POVMs covariant with respect to the HW group are unitarily or
antiunitarily equivalent if and only if they are on the same orbit of the
extended Clifford group. In dimension three, each group covariant SIC~POVM may
be covariant with respect to three or nine HW groups, and the symmetry group of
the SIC~POVM is a subgroup of at least one of the Clifford groups of these HW
groups respectively. There may exist two or three orbits of equivalent
SIC~POVMs for each group covariant SIC~POVM, depending on the order of its
symmetry group. We then establish a complete equivalence relation among group
covariant SIC~POVMs in dimension three, and classify inequivalent ones
according to the geometric phases associated with fiducial vectors. Finally, we
uncover additional SIC~POVMs by regrouping of the fiducial vectors from
different SIC~POVMs which may or may not be on the same orbit of the extended
Clifford group.Comment: 30 pages, 1 figure, section 4 revised and extended, published in J.
Phys. A: Math. Theor. 43, 305305 (2010
A small-angle neutron scattering study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles
cited By 3International audienceMixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position qmax of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies. © 2005 Elsevier Inc. All rights reserved
- …