2,827 research outputs found

    Intermediate inflation in light of the three-year WMAP observations

    Get PDF
    The three-year observations from the Wilkinson Microwave Anisotropy Probe have been hailed as giving the first clear indication of a spectral index n_s<1. We point out that the data are equally well explained by retaining the assumption n_s=1 and allowing the tensor-to-scalar ratio r to be non-zero. The combination n_s=1 and r>0 is given (within the slow-roll approximation) by a version of the intermediate inflation model with expansion rate H(t) \propto t^{-1/3}. We assess the status of this model in light of the WMAP3 data.Comment: 4 pages RevTeX4 with one figure. Minor changes to match PRD accepted versio

    Dynamics of Logamediate Inflation

    Full text link
    A computation of the inflationary observables n_{s} and r is made for `logamediate' inflation where the cosmological scale factor expands as a=exp(A(lnt)λ)a=\exp (A(\ln t)^{\lambda}), and is compared to their predicted values in the intermediate inflationary theory, where a=exp(Btf)a=\exp (Bt^{f}). Both versions prove to be consistent with observational measurements of the cosmic background radiation. It is shown that the dynamics of a single inflaton field can be mimicked by a system of several fields in an analogous manner to that created by the joint evolution of the fields in assisted power-law inflation.Comment: 7 pages, 5 figures. Extended introductio

    Gamma-rays from ultracompact minihalos: potential constraints on the primordial curvature perturbation

    Full text link
    Ultracompact minihalos (UCMHs) are dense dark matter structures which can form from large density perturbations shortly after matter-radiation equality. If dark matter is in the form of Weakly Interacting Massive Particles (WIMPs), then UCMHs may be detected via their gamma-ray emission. We investigate how the {\em{Fermi}} satellite could constrain the abundance of UCMHs and place limits on the power spectrum of the primordial curvature perturbation. Detection by {\em Fermi} would put a lower limit on the UCMH halo fraction. The smallest detectable halo fraction, fUCMH107f_{\rm UCMH} \gtrsim 10^{-7}, is for MUCMH103MM_{\rm UCMH} \sim 10^{3} M_{\odot}. If gamma-ray emission from UCMHs is not detected, an upper limit can be placed on the halo fraction. The bound is tightest, fUCMH105f_{\rm UCMH} \lesssim 10^{-5}, for MUCMH105MM_{\rm UCMH} \sim 10^{5} M_{\odot}. The resulting upper limit on the power spectrum of the primordial curvature perturbation in the event of non-detection is in the range PR106.5106\mathcal{P_R} \lesssim 10^{-6.5}- 10^{-6} on scales k101106Mpc1k \sim 10^{1}-10^{6} \, {\rm Mpc}^{-1}. This is substantially tighter than the existing constraints from primordial black hole formation on these scales, however it assumes that dark matter is in the form of WIMPs and UCMHs are not disrupted during the formation of the Milky Way halo.Comment: 5 pages, 2 figures, version to appear in Phys. Rev. D, minor change

    Future fuels and engines for railroad locomotives. Volume 1: Summary

    Get PDF
    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry

    The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations

    Full text link
    The velocity dispersion of galaxies on small scales (r1h1r\sim1h^{-1} Mpc), σ12(r)\sigma_{12}(r), can be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We apply this technique to ``mock-catalogs'' extracted from N-body simulations of several different variants of Cold Dark Matter dominated cosmological models to obtain results which may be consistently compared to similar results from observations. We find a large variation in the value of σ12(1h1Mpc)\sigma_{12}(1 h^{-1} Mpc) in different regions of the same simulation. We conclude that this statistic should not be considered to conclusively rule out any of the cosmological models we have studied. We attempt to make the statistic more robust by removing clusters from the simulations using an automated cluster-removing routine, but this appears to reduce the discriminatory power of the statistic. However, studying σ12\sigma_{12} as clusters with different internal velocity dispersions are removed leads to interesting information about the amount of power on cluster and subcluster scales. We also compute the pairwise velocity dispersion directly and compare this to the values obtained using the Davis-Peebles method, and find that the agreement is fairly good. We evaluate the models used for the mean streaming velocity and the pairwise peculiar velocity distribution in the original Davis-Peebles method by comparing the models with the results from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS macro

    Application of Bayesian model averaging to measurements of the primordial power spectrum

    Get PDF
    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model Evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940 < n_s < 1.000, where n_s is specified at a pivot scale 0.015 Mpc^{-1}. For the tensors model averaging can tighten the credible upper limit, depending on prior assumptions.Comment: 7 pages with 7 figures include

    Observational tests of inflation with a field derivative coupling to gravity

    Full text link
    A field kinetic coupling with the Einstein tensor leads to a gravitationally enhanced friction during inflation, by which even steep potentials with theoretically natural model parameters can drive cosmic acceleration. In the presence of this non-minimal derivative coupling we place observational constraints on a number of representative inflationary models such as chaotic inflation, inflation with exponential potentials, natural inflation, and hybrid inflation. We show that most of the models can be made compatible with the current observational data mainly due to the suppressed tensor-to-scalar ratio.Comment: 11 pages, 5 figure

    Investigations of the Non-Linear LMC Cepheid Period-Luminosity Relation with Testimator and Schwarz Information Criterion Methods

    Full text link
    In this paper, we investigate the linearity versus non-linearity of the Large Magellanic Cloud (LMC) Cepheid period-luminosity (P-L) relation using two statistical approaches not previously applied to this problem: the testimator method and the Schwarz Information Criterion (SIC). The testimator method is extended to multiple stages for the first time, shown to be unbiased and the variance of the estimated slope can be proved to be smaller than the standard slope estimated from linear regression theory. The Schwarz Information Criterion (also known as the Bayesian Information Criterion) is more conservative than the Akaike Information Criterion and tends to choose lower order models. By using simulated data sets, we verify that these statistical techniques can be used to detect intrinsically linear and/or non-linear P-L relations. These methods are then applied to independent LMC Cepheid data sets from the OGLE project and the MACHO project, respectively. Our results imply that there is a change of slope in longer period ranges for all of the data sets. This strongly supports previous results, obtained from independent statistical tests, that the observed LMC P-L relation is non-linear with a break period at/around 10 days.Comment: 9 pages, 5 figures and 3 tables, PASP accepte

    Inflationary Cosmology: Theory and Phenomenology

    Get PDF
    This article gives a brief overview of some of the theory behind the inflationary cosmology, and discusses prospects for constraining inflation using observations. Particular care is given to the question of falsifiability of inflation or of subsets of inflationary models.Comment: 11 pages LaTeX file (using iopart) with 4 figures included via EPSF. Article based on a talk presented at ``The Early Universe and Cosmological Observations: a Critical Review'', Cape Town, July 200
    corecore