2,827 research outputs found
Intermediate inflation in light of the three-year WMAP observations
The three-year observations from the Wilkinson Microwave Anisotropy Probe
have been hailed as giving the first clear indication of a spectral index
n_s<1. We point out that the data are equally well explained by retaining the
assumption n_s=1 and allowing the tensor-to-scalar ratio r to be non-zero. The
combination n_s=1 and r>0 is given (within the slow-roll approximation) by a
version of the intermediate inflation model with expansion rate H(t) \propto
t^{-1/3}. We assess the status of this model in light of the WMAP3 data.Comment: 4 pages RevTeX4 with one figure. Minor changes to match PRD accepted
versio
Dynamics of Logamediate Inflation
A computation of the inflationary observables n_{s} and r is made for
`logamediate' inflation where the cosmological scale factor expands as , and is compared to their predicted values in the
intermediate inflationary theory, where . Both versions prove
to be consistent with observational measurements of the cosmic background
radiation. It is shown that the dynamics of a single inflaton field can be
mimicked by a system of several fields in an analogous manner to that created
by the joint evolution of the fields in assisted power-law inflation.Comment: 7 pages, 5 figures. Extended introductio
Gamma-rays from ultracompact minihalos: potential constraints on the primordial curvature perturbation
Ultracompact minihalos (UCMHs) are dense dark matter structures which can
form from large density perturbations shortly after matter-radiation equality.
If dark matter is in the form of Weakly Interacting Massive Particles (WIMPs),
then UCMHs may be detected via their gamma-ray emission. We investigate how the
{\em{Fermi}} satellite could constrain the abundance of UCMHs and place limits
on the power spectrum of the primordial curvature perturbation. Detection by
{\em Fermi} would put a lower limit on the UCMH halo fraction. The smallest
detectable halo fraction, , is for . If gamma-ray emission from UCMHs is not detected, an
upper limit can be placed on the halo fraction. The bound is tightest, , for . The
resulting upper limit on the power spectrum of the primordial curvature
perturbation in the event of non-detection is in the range on scales . This is substantially tighter than the existing constraints from
primordial black hole formation on these scales, however it assumes that dark
matter is in the form of WIMPs and UCMHs are not disrupted during the formation
of the Milky Way halo.Comment: 5 pages, 2 figures, version to appear in Phys. Rev. D, minor change
Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries
Future fuels and engines for railroad locomotives. Volume 1: Summary
The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry
The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations
The velocity dispersion of galaxies on small scales ( Mpc),
, can be estimated from the anisotropy of the galaxy-galaxy
correlation function in redshift space. We apply this technique to
``mock-catalogs'' extracted from N-body simulations of several different
variants of Cold Dark Matter dominated cosmological models to obtain results
which may be consistently compared to similar results from observations. We
find a large variation in the value of in different
regions of the same simulation. We conclude that this statistic should not be
considered to conclusively rule out any of the cosmological models we have
studied. We attempt to make the statistic more robust by removing clusters from
the simulations using an automated cluster-removing routine, but this appears
to reduce the discriminatory power of the statistic. However, studying
as clusters with different internal velocity dispersions are
removed leads to interesting information about the amount of power on cluster
and subcluster scales. We also compute the pairwise velocity dispersion
directly and compare this to the values obtained using the Davis-Peebles
method, and find that the agreement is fairly good. We evaluate the models used
for the mean streaming velocity and the pairwise peculiar velocity distribution
in the original Davis-Peebles method by comparing the models with the results
from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS
macro
Application of Bayesian model averaging to measurements of the primordial power spectrum
Cosmological parameter uncertainties are often stated assuming a particular
model, neglecting the model uncertainty, even when Bayesian model selection is
unable to identify a conclusive best model. Bayesian model averaging is a
method for assessing parameter uncertainties in situations where there is also
uncertainty in the underlying model. We apply model averaging to the estimation
of the parameters associated with the primordial power spectra of curvature and
tensor perturbations. We use CosmoNest and MultiNest to compute the model
Evidences and posteriors, using cosmic microwave data from WMAP, ACBAR,
BOOMERanG and CBI, plus large-scale structure data from the SDSS DR7. We find
that the model-averaged 95% credible interval for the spectral index using all
of the data is 0.940 < n_s < 1.000, where n_s is specified at a pivot scale
0.015 Mpc^{-1}. For the tensors model averaging can tighten the credible upper
limit, depending on prior assumptions.Comment: 7 pages with 7 figures include
Observational tests of inflation with a field derivative coupling to gravity
A field kinetic coupling with the Einstein tensor leads to a gravitationally
enhanced friction during inflation, by which even steep potentials with
theoretically natural model parameters can drive cosmic acceleration. In the
presence of this non-minimal derivative coupling we place observational
constraints on a number of representative inflationary models such as chaotic
inflation, inflation with exponential potentials, natural inflation, and hybrid
inflation. We show that most of the models can be made compatible with the
current observational data mainly due to the suppressed tensor-to-scalar ratio.Comment: 11 pages, 5 figure
Investigations of the Non-Linear LMC Cepheid Period-Luminosity Relation with Testimator and Schwarz Information Criterion Methods
In this paper, we investigate the linearity versus non-linearity of the Large
Magellanic Cloud (LMC) Cepheid period-luminosity (P-L) relation using two
statistical approaches not previously applied to this problem: the testimator
method and the Schwarz Information Criterion (SIC). The testimator method is
extended to multiple stages for the first time, shown to be unbiased and the
variance of the estimated slope can be proved to be smaller than the standard
slope estimated from linear regression theory. The Schwarz Information
Criterion (also known as the Bayesian Information Criterion) is more
conservative than the Akaike Information Criterion and tends to choose lower
order models. By using simulated data sets, we verify that these statistical
techniques can be used to detect intrinsically linear and/or non-linear P-L
relations. These methods are then applied to independent LMC Cepheid data sets
from the OGLE project and the MACHO project, respectively. Our results imply
that there is a change of slope in longer period ranges for all of the data
sets. This strongly supports previous results, obtained from independent
statistical tests, that the observed LMC P-L relation is non-linear with a
break period at/around 10 days.Comment: 9 pages, 5 figures and 3 tables, PASP accepte
Inflationary Cosmology: Theory and Phenomenology
This article gives a brief overview of some of the theory behind the
inflationary cosmology, and discusses prospects for constraining inflation
using observations. Particular care is given to the question of falsifiability
of inflation or of subsets of inflationary models.Comment: 11 pages LaTeX file (using iopart) with 4 figures included via EPSF.
Article based on a talk presented at ``The Early Universe and Cosmological
Observations: a Critical Review'', Cape Town, July 200
- …
