107 research outputs found

    Four - Fermi Theories in Fewer Than Four Dimensions

    Get PDF
    Four-fermi models in dimensionality 2<d<42<d<4 exhibit an ultra-violet stable renormalization group fixed point at a strong value of the coupling constant where chiral symmetry is spontaneously broken. The resulting field theory describes relativistic fermions interacting non-trivially via exchange of scalar bound states. We calculate the O(1/Nf)O(1/N_f) corrections to this picture, where NfN_f is the number of fermion species, for a variety of models and confirm their renormalizability to this order. A connection between renormalizability and the hyperscaling relations between the theory's critical exponents is made explicit. We present results of extensive numerical simulations of the simplest model for d=3d=3, performed using the hybrid Monte Carlo algorithm on lattice sizes ranging from 838^3 to 24324^3. For Nf=12N_f=12 species of massless fermions we confirm the existence of a second order phase transition where chiral symmetry is spontaneously broken. Using both direct measurement and finite size scaling arguments we estimate the critical exponents β\beta, γ\gamma, ν\nu and δ\delta. We also investigate symmetry restoration at non-zero temperature, and the scalar two-point correlation function in the vicinity of the bulk transition. All our results are in excellent agreement with analytic predictions, and support the contention that the 1/Nf1/N_f expansion is accurate for this class of models.Comment: CERN-TH.6557/92 ILL-(TH)-92-\# 19, 60 pages, 18 figures (not included

    The nature of the continuum limit in strongly coupled quenched QED

    Get PDF
    We review the results of large scale simulations of noncompact quenched QEDQED which use spectrum and Equation of State calculations to determine the theory's phase diagram, critical indices, and continuum limit. The resulting anomalous dimensions are in good agreement with Schwinger-Dyson solutions of the ladder graphs of conventional QEDQED and they satisfy the hyperscaling relations expected of a relativistic renormalizable field theory. The spectroscopy results satisfy the constraints of the Goldstone mechanism and PCAC, and may be indicative of Technicolor versions of the Standard Model which are strongly coupled at short distances.Comment: (talk given at the XXVI ICHEP, Dallas, TX, Aug 6-12 92), 6 pp., ILL-(TH)-92-#2

    Spectroscopy, Equation Of State And Monopole Percolation In Lattice QED With Two Flavors

    Full text link
    Non-compact lattice QED with two flavors of light dynamical quarks is simulated on 16416^4 lattices, and the chiral condensate, monopole density and susceptibility and the meson masses are measured. Data from relatively high statistics runs at relatively small bare fermion masses of 0.005, 0.01, 0.02 and 0.03 (lattice units) are presented. Three independent methods of data analysis indicate that the critical point occurs at β=0.225(5)\beta =0.225(5) and that the monopole condensation and chiral symmetry breaking transitions are coincident. The monopole condensation data satisfies finite size scaling hypotheses with critical indices compatible with four dimensional percolation. The best chiral equation of state fit produces critical exponents (δ=2.31\delta=2.31, βmag=0.763\beta_{mag}=0.763) which deviate significantly from mean field expectations. Data for the ratio of the sigma to pion masses produces an estimate of the critical index δ\delta in good agreement with chiral condensate measurements. In the strong coupling phase the ratio of the meson masses are Mσ2/Mρ20.35M_\sigma^2/M_\rho^2\approx 0.35, MA12/Mρ21.4M_{A_1}^2/M_\rho^2\approx 1.4 and Mπ2/Mρ20.0M_\pi^2/M_\rho^2\approx 0.0, while on the weak coupling side of the transition Mπ2/Mρ21.0M_\pi^2/M_\rho^2\approx 1.0, MA12/Mρ21.0M_{A_1}^2/M_\rho^2\approx 1.0, indicating the restoration of chiral symmetry.\footnote{\,^{}}{August 1992}Comment: 21 pages, 24 figures (not included

    Kosterlitz-Thouless Universality in a Fermionic System

    Full text link
    A new extension of the attractive Hubbard model is constructed to study the critical behavior near a finite temperature superconducting phase transition in two dimensions using the recently developed meron-cluster algorithm. Unlike previous calculations in the attractive Hubbard model which were limited to small lattices, the new algorithm is used to study the critical behavior on lattices as large as 128×128128\times 128. These precise results for the first time show that a fermionic system can undergo a finite temperature phase transition whose critical behavior is well described by the predictions of Kosterlitz and Thouless almost three decades ago. In particular it is confirmed that the spatial winding number susceptibility obeys the well known predictions of finite size scaling for T<TcT<T_c and up to logarithmic corrections the pair susceptibility scales as L2ηL^{2-\eta} at large volumes with 0η0.250\leq\eta\leq 0.25 for 0TTc0\leq T\leq T_c.Comment: Revtex format; 4 pages, 2 figure

    Dimensional Reduction and Quantum-to-Classical Reduction at High Temperatures

    Full text link
    We discuss the relation between dimensional reduction in quantum field theories at finite temperature and a familiar quantum mechanical phenomenon that quantum effects become negligible at high temperatures. Fermi and Bose fields are compared in this respect. We show that decoupling of fermions from the dimensionally reduced theory can be related to the non-existence of classical statistics for a Fermi field.Comment: 11 pages, REVTeX, revised v. to be published in Phys. Rev. D: some points made more explici

    Critical region of the finite temperature chiral transition

    Get PDF
    We study a Yukawa theory with spontaneous chiral symmetry breaking and with a large number N of fermions near the finite temperature phase transition. Critical properties in such a system can be described by the mean field theory very close to the transition point. We show that the width of the region where non-trivial critical behavior sets in is suppressed by a certain power of 1/N. Our Monte Carlo simulations confirm these analytical results. We discuss implications for the chiral phase transition in QCD.Comment: 18 page

    On the Interplay of Monopoles and Chiral Symmetry Breaking in Non-Compact Lattice QED

    Full text link
    Non-compact lattice QED is simulated for various numbers of fermion species NfN_f ranging from 8 through 40 by the exact Hybrid Monte Carlo algorithm. Over this range of NfN_f, chiral symmetry breaking is found to be strongly correlated with the effective monopoles in the theory. For NfN_f between 8 and 16 the chiral symmetry breaking and monopole percolation transitions are second order and coincident. Assuming powerlaw critical behavior, the correlation length exponent for the chiral transition is identical to that of monopole percolation. This result supports the conjecture that monopole percolation ``drives" the nontrivial chiral transition. For NfN_f between 20 and 32, the monopoles experience a first order condensation transition coincident with a first order chiral transition. For NfN_f as large as 40 both transitions are strongly suppressed. The data at large N_f (N_f \mathrel {\mathpalette \vereq >} 20) is interpreted in terms of a strongly interacting monopole gas-liquid transition.Comment: Revtex file, 23 pages, hardcopy figures only

    On the Logarithmic Triviality of Scalar Quantum Electrodynamics

    Full text link
    Using finite size scaling and histogram methods we obtain numerical results from lattice simulations indicating the logarithmic triviality of scalar quantum electrodynamics, even when the bare gauge coupling is chosen large. Simulations of the non-compact formulation of the lattice abelian Higgs model with fixed length scalar fields on L4L^{4} lattices with LL ranging from 66 through 2020 indicate a line of second order critical points. Fluctuation-induced first order transitions are ruled out. Runs of over ten million sweeps for each LL produce specific heat peaks which grow logarithmically with LL and whose critical couplings shift with LL picking out a correlation length exponent of 0.50(5)0.50(5) consistent with mean field theory. This behavior is qualitatively similar to that found in pure λϕ4\lambda\phi^{4}.Comment: 9 page
    corecore