302 research outputs found

    New Enhanced Tunneling in Nuclear Processes

    Get PDF
    The small sub-barrier tunneling probability of nuclear processes can be dramatically enhanced by collision with incident charged particles. Semiclassical methods of theory of complex trajectories have been applied to nuclear tunneling, and conditions for the effects have been obtained. We demonstrate the enhancement of alpha particle decay by incident proton with energy of about 0.25 MeV. We show that the general features of this process are common for other sub-barrier nuclear processes and can be applied to nuclear fission.Comment: RevTex4, 2 figure

    The bifurcation phenomena in the resistive state of the narrow superconducting channels

    Full text link
    We have investigated the properties of the resistive state of the narrow superconducting channel of the length L/\xi=10.88 on the basis of the time-dependent Ginzburg-Landau model. We have demonstrated that the bifurcation points of the time-dependent Ginzburg-Landau equations cause a number of singularities of the current-voltage characteristic of the channel. We have analytically estimated the averaged voltage and the period of the oscillating solution for the relatively small currents. We have also found the range of currents where the system possesses the chaotic behavior

    Vortex liquid crystals in anisotropic type II superconductors

    Full text link
    In a type II superconductor in a moderate magnetic field, the superconductor to normal state transition may be described as a phase transition in which the vortex lattice melts into a liquid. In a biaxial superconductor, or even a uniaxial superconductor with magnetic field oriented perpendicular to the symmetry axis, the vortices acquire elongated cross sections and interactions. Systems of anisotropic, interacting constituents generally exhibit liquid crystalline phases. We examine the possibility of a two step melting in homogeneous type II superconductors with anisotropic superfluid stiffness from a vortex lattice into first a vortex smectic and then a vortex nematic at high temperature and magnetic field. We find that fluctuations of the ordered phase favor an instability to an intermediate smectic-A in the absence of intrinsic pinning

    Two-dimensional tunneling in a SQUID

    Full text link
    Traditionally quantum tunneling in a static SQUID is studied on the basis of a classical trajectory in imaginary time under a two-dimensional potential barrier. The trajectory connects a potential well and an outer region crossing their borders in perpendicular directions. In contrast to that main-path mechanism, a wide set of trajectories with components tangent to the border of the well can constitute an alternative mechanism of multi-path tunneling. The phenomenon is essentially non-one-dimensional. Continuously distributed paths under the barrier result in enhancement of tunneling probability. A type of tunneling mechanism (main-path or multi-path) depends on character of a state in the potential well prior to tunneling.Comment: 9 pages, 8 figure

    Current-voltage characteristic of narrow superconducting wires: bifurcation phenomena

    Full text link
    The current-voltage characteristics of long and narrow superconducting channels are investigated using the time-dependent Ginzburg-Landau equations for complex order parameter. We found out that the steps in the current voltage characteristic can be associated with bifurcations of either steady or oscillatory solution. We revealed typical instabilities which induced the singularities in current-voltage characteristics, and analytically estimated period of oscillations and average voltage in the vicinity of the critical currents. Our results show that these bifurcations can substantially complicate dynamics of the order parameter and eventually lead to appearance of such phenomena as multistability and chaos. The discussed bifurcation phenomena sheds a light on some recent experimental findings

    Spontaneous superconducting islands and Hall voltage in clean superconductors

    Full text link
    We study a clean superconductor in the Hall configuration, in the framework of a purely dissipative time-dependent Ginzburg--Landau theory. We find situations in which the order parameter differs significantly from zero in a set of islands that appear to form a periodic structure. When the pattern of islands becomes irregular, it moves in or against the direction of the current and a Hall voltage is found. Tiny differences in the initial state may reverse the sign of the Hall voltage. When the average Hall voltage vanishes, the local Hall voltage does not necessarily vanish. We examine the influence that several boundary conditions at the electrodes have on these effects.Comment: 6 pages, Includes additional cases and more detailed result

    Nanosecond quantum state detection in a current biased dc SQUID

    Full text link
    This article presents our procedure to measure the quantum state of a dc SQUID within a few nanoseconds, using an adiabatic dc flux pulse. Detection of the ground state is governed by standard macroscopic quantum theory (MQT), with a small correction due to residual noise in the bias current. In the two level limit, where the SQUID constitutes a phase qubit, an observed contrast of 0.54 indicates a significant loss in contrast compared to the MQT prediction. It is attributed to spurious depolarization (loss of excited state occupancy) during the leading edge of the adiabatic flux measurement pulse. We give a simple phenomenological relaxation model which is able to predict the observed contrast of multilevel Rabi oscillations for various microwave amplitudes.Comment: 10 pages, 8 figure

    Mesoscopic field and current compensator based on a hybrid superconductor-ferromagnet structure

    Full text link
    A rather general enhancement of superconductivity is demonstrated in a hybrid structure consisting of submicron superconducting (SC) sample combined with an in-plane ferromagnet (FM). The superconducting state resists much higher applied magnetic fields for both perpendicular polarities, as applied field is screened by the FM. In addition, FM induces (in the perpendicular direction to its moment) two opposite current-flows in the SC plane, under and aside the magnet, respectively. Due to the compensation effects, superconductivity persists up to higher applied currents. With increasing current, the sample undergoes SC-"resistive"-normal state transitions through a mixture of vortex-antivortex and phase-slip phenomena.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
    corecore