3,983 research outputs found
The role of pump coherence in two-photon interferometry
We use a parametric down-conversion source pumped by a short coherence-length
continuous-wave (CW) diode laser to perform two-photon interferometry in an
intermediate regime between the more familiar Franson-type experiments with a
long coherence-length pump laser, and the short pulsed pump "time-bin"
experiments pioneered by Gisin's group. The use of a time-bin-like Mach-Zehnder
interferometer in the CW pumping beam induces coherence between certain
two-photon amplitudes, while the CW nature of the experiment prevents the
elimination of remaining incoherent ones. The experimental results highlight
the role of pump coherence in two-photon interferometry
Localizability of Wireless Sensor Networks: Beyond Wheel Extension
A network is called localizable if the positions of all the nodes of the
network can be computed uniquely. If a network is localizable and embedded in
plane with generic configuration, the positions of the nodes may be computed
uniquely in finite time. Therefore, identifying localizable networks is an
important function. If the complete information about the network is available
at a single place, localizability can be tested in polynomial time. In a
distributed environment, networks with trilateration orderings (popular in real
applications) and wheel extensions (a specific class of localizable networks)
embedded in plane can be identified by existing techniques. We propose a
distributed technique which efficiently identifies a larger class of
localizable networks. This class covers both trilateration and wheel
extensions. In reality, exact distance is almost impossible or costly. The
proposed algorithm based only on connectivity information. It requires no
distance information
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
To date, an experimental dip-coating facility was constructed. Using this facility, relatively thin (1 mm) mullite and alumina substrates were successfully dip-coated with 2.5 - 3.0 ohm-cm, p-type silicon with areas of approximately 20 sq cm. The thickness and grain size of these coatings are influenced by the temperature of the melt and the rate at which the substrate is pulled from the melt. One mullite substrate had dendrite-like crystallites of the order of 1 mm wide and 1 to 2 cm long. Their axes were aligned along the direction of pulling. A large variety of substrate materials were purchased or developed enabling the program to commence a substrate definition evaluation. Due to the insulating nature of the substrate, the bottom layer of the p-n junction may have to be made via the top surface. The feasibility of accomplishing this was demonstrated using single crystal wafers
Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV)
The International Committee on Taxonomy of Viruses (ICTV) is charged with the task of developing, refining, and maintaining a universal virus taxonomy. This task encompasses the classification of virus species and higher-level taxa according to the genetic and biological properties of their members; naming virus taxa; maintaining a database detailing the currently approved taxonomy; and providing the database, supporting proposals, and other virus-related information from an open-access, public web site. The ICTV web site (http://ictv.global) provides access to the current taxonomy database in online and downloadable formats, and maintains a complete history of virus taxa back to the first release in 1971. The ICTV has also published the ICTV Report on Virus Taxonomy starting in 1971. This Report provides a comprehensive description of all virus taxa covering virus structure, genome structure, biology and phylogenetics. The ninth ICTV report, published in 2012, is available as an open-access online publication from the ICTV web site. The current, 10th report (http://ictv.global/report/), is being published online, and is replacing the previous hard-copy edition with a completely open access, continuously updated publication. No other database or resource exists that provides such a comprehensive, fully annotated compendium of information on virus taxa and taxonomy
Partitioning Complex Networks via Size-constrained Clustering
The most commonly used method to tackle the graph partitioning problem in
practice is the multilevel approach. During a coarsening phase, a multilevel
graph partitioning algorithm reduces the graph size by iteratively contracting
nodes and edges until the graph is small enough to be partitioned by some other
algorithm. A partition of the input graph is then constructed by successively
transferring the solution to the next finer graph and applying a local search
algorithm to improve the current solution.
In this paper, we describe a novel approach to partition graphs effectively
especially if the networks have a highly irregular structure. More precisely,
our algorithm provides graph coarsening by iteratively contracting
size-constrained clusterings that are computed using a label propagation
algorithm. The same algorithm that provides the size-constrained clusterings
can also be used during uncoarsening as a fast and simple local search
algorithm.
Depending on the algorithm's configuration, we are able to compute partitions
of very high quality outperforming all competitors, or partitions that are
comparable to the best competitor in terms of quality, hMetis, while being
nearly an order of magnitude faster on average. The fastest configuration
partitions the largest graph available to us with 3.3 billion edges using a
single machine in about ten minutes while cutting less than half of the edges
than the fastest competitor, kMetis
All-Optical Switching Demonstration using Two-Photon Absorption and the Classical Zeno Effect
Low-contrast all-optical Zeno switching has been demonstrated in a silicon
nitride microdisk resonator coupled to a hot atomic vapor. The device is based
on the suppression of the field build-up within a microcavity due to
non-degenerate two-photon absorption. This experiment used one beam in a
resonator and one in free-space due to limitations related to device physics.
These results suggest that a similar scheme with both beams resonant in the
cavity would correspond to input power levels near 20 nW.Comment: 4 pages, 5 figure
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry
Scanning a photonic crystal slab nanocavity by condensation of xenon
Allowing xenon or nitrogen gas to condense onto a photonic crystal slab nanocavity maintained at 10–20 K results in shifts of the nanocavity mode wavelength by as much as 5 nm (~=4 meV). This occurs in spite of the fact that the mode defect is achieved by omitting three holes to form the spacer. This technique should be useful in changing the detuning between a single quantum dot transition and the nanocavity mode for cavity quantum electrodynamics experiments, such as mapping out a strong coupling anticrossing curve. Compared with temperature scanning, it has a much larger scan range and avoids phonon broadening
- …
