4,840 research outputs found

    Helium 3/Helium 4 dilution cryocooler for space

    Get PDF
    Prototype dilution cryocoolers based on dilution refrigeration and adiabatic demagnetization refrigeration (ADR) cycles were designed, constructed, and tested. Although devices the devices did not operate as fully functional dilution cryocoolers, important information was gathered. The porous metal phase separator was demonstrated to operate in the -1-g configuration; this phase separation is the critical element in the He-3 circulation dilution cryocooler. Improvements in instrumentation needed for additional tests and development were identified

    Superconducting gyroscope research

    Get PDF
    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture

    Simulated breath waveform control

    Get PDF
    Subsystem was developed which provides twelve waveform controls to breath drive mechanism. Twelve position, magnetically actuated rotary switch is connected to one end of crankshaft drive, such that it makes one complete revolution for each simulated breath. Connections with common wired point are included in modifications made to standard motor speed controller

    Infrared telescope

    Get PDF
    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described

    Vibrational branching ratios and hyperfine structure of 11^{11}BH and its suitability for laser cooling

    Get PDF
    The simple structure of the BH molecule makes it an excellent candidate for direct laser cooling. We measure the branching ratios for the decay of the A1Π(v=0){\rm A}^{1}\Pi (v'=0) state to vibrational levels of the ground state, X1Σ+{\rm X}^{1}\Sigma^{+}, and find that they are exceedingly favourable for laser cooling. We verify that the branching ratio for the spin-forbidden transition to the intermediate a3Π{\rm a}^{3}\Pi state is inconsequentially small. We measure the frequency of the lowest rotational transition of the X state, and the hyperfine structure in the relevant levels of both the X and A states, and determine the nuclear electric quadrupole and magnetic dipole coupling constants. Our results show that, with a relatively simple laser cooling scheme, a Zeeman slower and magneto-optical trap can be used to cool, slow and trap BH molecules.Comment: 7 pages, 5 figures. Updated analysis of A state hyperfine structure and other minor revision

    Breathing-metabolic simulator

    Get PDF
    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response

    Evaluation of seals for high-performance cryogenic turbomachines

    Get PDF
    An approach to computing flow and dynamic characteristics for seals or bearings is discussed. The local average velocity was strongly influenced by inlet and exit effects and fluid injection, which in turn drove zones of secondary flow. For the restricted three-dimensional model considered, the integral averaged results were in reasonable agreement with selected data. Unidirectional pressure measurements alone were insufficient to define such flow variations. However, for seal and bearing leakage correlations the principles of corresponding states were found to be useful. Also discussed are three phenomena encountered during testing of three eccentric nonrotating seal configurations for the Space Shuttle Main Engine (SSME) Program. Fluid injection, choking within a seal, and pressure profile crossover are related to postulated zones of secondary flow or separation and to direct stiffness

    A high quality, efficiently coupled microwave cavity for trapping cold molecules

    Full text link
    We characterize a Fabry-Perot microwave cavity designed for trapping atoms and molecules at the antinode of a microwave field. The cavity is fed from a waveguide through a small coupling hole. Focussing on the compact resonant modes of the cavity, we measure how the electric field profile, the cavity quality factor, and the coupling efficiency, depend on the radius of the coupling hole. We measure how the quality factor depends on the temperature of the mirrors in the range from 77 to 293K. The presence of the coupling hole slightly changes the profile of the mode, leading to increased diffraction losses around the edges of the mirrors and a small reduction in quality factor. We find the hole size that maximizes the intra-cavity electric field. We develop an analytical theory of the aperture-coupled cavity that agrees well with our measurements, with small deviations due to enhanced diffraction losses. We find excellent agreement between our measurements and finite-difference time-domain simulations of the cavity.Comment: 16 pages, 8 figure

    Measurements of bremsstrahlung produced by 0.75 and 1.25 mev electrons incident on typical apollo wall sections

    Get PDF
    Bremsstrahlung measurements on Apollo spacecraft wall sections irradiated with 0.75 and 1.25 MeV electrons from electron accelerato
    corecore