668 research outputs found

    On effective action of string theory flux compactifications

    Full text link
    We discuss four dimensional effective actions of string theory flux compactifications. These effective actions describe four dimensional gravity coupled to overall Kahler modulus of the compactification manifold. We demonstrate the agreement between ten dimensional equations of motion of supergravity with localized branes, and equations of motion derived from the effective action. The agreement is lost however if one evaluates the full effective action on the equations of motion for a subset of the supergravity modes, provided these modes depend on-shell on the Kahler modulus.Comment: 25 pages; v2: refs adde

    Dynamics of Fundamental Matter in N=2* Yang-Mills Theory

    Full text link
    We study the dynamics of quenched fundamental matter in N=2\mathcal{N}=2^\ast supersymmetric large NN SU(N) Yang-Mills theory at zero temperature. Our tools for this study are probe D7-branes in the holographically dual N=2\mathcal{N}=2^\ast Pilch-Warner gravitational background. Previous work using D3-brane probes of this geometry has shown that it captures the physics of a special slice of the Coulomb branch moduli space of the gauge theory, where the NN constituent D3-branes form a dense one dimensional locus known as the enhancon, located deep in the infrared. Our present work shows how this physics is supplemented by the physics of dynamical flavours, revealed by the D7-branes embeddings we find. The Pilch-Warner background introduces new divergences into the D7-branes free energy, which we are able to remove with a single counterterm. We find a family of D7-brane embeddings in the geometry and discuss their properties. We study the physics of the quark condensate, constituent quark mass, and part of the meson spectrum. Notably, there is a special zero mass embedding that ends on the enhancon, which shows that while the geometry acts repulsively on the D7-branes, it does not do so in a way that produces spontaneous chiral symmetry breaking.Comment: 24 pages, 8 figures. Corrected typos, added comment about counterterm. To appear in JHE

    Hydrodynamics of fundamental matter

    Full text link
    First and second order transport coefficients are calculated for the strongly coupled N=4 SYM plasma coupled to massless fundamental matter in the Veneziano limit. The results, including among others the value of the bulk viscosity and some relaxation times, are presented at next-to-leading order in the flavor contribution. The bulk viscosity is found to saturate Buchel's bound. This result is also captured by an effective single-scalar five-dimensional holographic dual in the Chamblin-Reall class and it is suggested to hold, in the limit of small deformations, for generic plasmas with gravity duals, whenever the leading conformality breaking effects are driven by marginally (ir)relevant operators. This proposal is then extended to other relations for hydrodynamic coefficients, which are conjectured to be universal for every non-conformal plasma with a dual Chamblin-Reall-like description. Our analysis extends to any strongly coupled gauge theory describing the low energy dynamics of Nc>>1 D3-branes at the tip of a generic Calabi-Yau cone. The fundamental fields are added by means of 1<<Nf<<Nc homogeneously smeared D7-branes.Comment: 24 pages. V2: Important improvements in the discussion of the results in section 1. References adde

    The effect of higher derivative correction on η/s\eta /s and conductivities in STU model

    Full text link
    In this paper we study the ratio of shear viscosity to entropy, electrical and thermal conductivities for the R-charged black hole in STU model. We generalize previous works to the case of a black hole with three different charges. Actually we use diffusion constant to obtain ratio of shear viscosity to entropy. By applying the thermodynamical stability we recover previous results. Also we investigate the effect of higher derivative corrections.Comment: revised versio

    Black Holes in Quasi-topological Gravity

    Full text link
    We construct a new gravitational action which includes cubic curvature interactions and which provides a useful toy model for the holographic study of a three parameter family of four- and higher-dimensional CFT's. We also investigate the black hole solutions of this new gravity theory. Further we examine the equations of motion of quasi-topological gravity. While the full equations in a general background are fourth-order in derivatives, we show that the linearized equations describing gravitons propagating in the AdS vacua match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde

    Thermal Dynamics of Quarks and Mesons in N=2* Yang-Mills Theory

    Full text link
    We study the dynamics of quenched fundamental matter in N=2\mathcal{N}=2^\ast supersymmetric large NcN_c SU(Nc)SU(N_c) Yang-Mills theory, extending our earlier work to finite temperature. We use probe D7-branes in the holographically dual thermalized generalization of the N=2\mathcal{N}=2^\ast Pilch-Warner gravitational background found by Buchel and Liu. Such a system provides an opportunity to study how key features of the dynamics are affected by being in a non-conformal setting where there is an intrinsic scale, set here by the mass, mHm_H, of a hypermultiplet. Such studies are motivated by connections to experimental studies of the quark-gluon plasma at RHIC and LHC, where the microscopic theory of the constituents, QCD, has a scale, ΛQCD\Lambda_{\rm QCD}. We show that the binding energy of mesons in the N=2\mathcal{N}=2^\ast theory is increased in the presence of the scale mHm_H, and that subsequently the meson-melting temperature is higher than for the conformal case.Comment: 17 pages, 6 figure

    Hadronic Density of States from String Theory

    Full text link
    Exactly soluble string theories describing a particular hadronic sector of certain confining gauge theories have been obtained recently as Penrose-Gueven limits of the dual supergravity backgrounds. The effect of taking the Penrose-Gueven limit on the gravity side translates, in the gauge theory side, into an effective truncation to hadrons of large U(1) charge (annulons). We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Gueven limit of the Maldacena-Nunez embedding of N=1 SYM into string theory. It is established that the theory exhibits a Hagedorn density of states. Motivated by this exact calculation we propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.Comment: 15 page

    Comments on Supergravity Description of S-branes

    Full text link
    This is a note on the coupled supergravity-tachyon matter system, which has been earlier proposed as a candidate for the effective space-time description of S-branes. In particular, we study an ansatz with the maximal ISO(p+1)xSO(8-p,1) symmetry, for general brane dimensionality p and homogeneous brane distribution in transverse space \rho_\perp. A simple application of singularity theorems shows that (for p \le 7) the most general solution with these symmetries is always singular. (This invalidates a recent claim in the literature.) We include a few general comments about the possibility of describing the decay of unstable D-branes in purely gravitational terms.Comment: 19 pages, refs adde

    Temperature evolution of magnetic structure of HoFeO3_3 by single crystal neutron diffraction

    Get PDF
    We have investigated the temperature evolution of the magnetic structures of HoFeO3_3 by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for \hfo\ are described by the magnetic groups Pb'n21'2_1, Pbn212_1 and Pbn21'2_1' and are stable in the temperature ranges \approx 600-55~K, 55-37~K and 35>T>2>T>2~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along xx and yy, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in \hfo\ the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite

    Causality in AdS/CFT and Lovelock theory

    Full text link
    We explore the constraints imposed on higher curvature corrections of the Lovelock type due to causality restrictions in the boundary of asymptotically AdS space-time. In the framework of AdS/CFT, this is related to positivity of the energy constraints that arise in conformal collider physics. We present explicit analytic results that fully address these issues for cubic Lovelock gravity in arbitrary dimensions and give the formal analytic results that comprehend general Lovelock theory. The computations can be performed in two ways, both by considering a thermal setup in a black hole background and by studying the scattering of gravitons with a shock wave in AdS. We show that both computations coincide in Lovelock theory. The different helicities, as expected, provide the boundaries defining the region of allowed couplings. We generalize these results to arbitrary higher dimensions and discuss their consequences on the shear viscosity to energy density ratio of CFT plasmas, the possible existence of Boulware-Deser instabilities in Lovelock theory and the extent to which the AdS/CFT correspondence might be valid for arbitrary dimensions.Comment: 35 pages, 20 figures; v2: minor amendments and clarifications include
    corecore