16 research outputs found

    The disrupted molecular circadian clock of monocytes and macrophages in allergic inflammation

    Get PDF
    IntroductionMacrophage dysfunction is a common feature of inflammatory disorders such as asthma, which is characterized by a strong circadian rhythm.Methods and resultsWe monitored the protein expression pattern of the molecular circadian clock in human peripheral blood monocytes from healthy, allergic, and asthmatic donors during a whole day. Monocytes cultured of these donors allowed us to examine circadian protein expression in human monocyte-derived macrophages, M1- and M2- polarized macrophages. In monocytes, particularly from allergic asthmatics, the oscillating expression of circadian proteins CLOCK, BMAL, REV ERBs, and RORs was significantly altered. Similar changes in BMAL1 were observed in polarized macrophages from allergic donors and in tissue-resident macrophages from activated precision cut lung slices. We confirmed clock modulating, anti-inflammatory, and lung-protective properties of the inverse ROR agonist SR1001 by reduced secretion of macrophage inflammatory protein and increase in phagocytosis. Using a house dust mite model, we verified the therapeutic effect of SR1001 in vivo.DiscussionOverall, our data suggest an interaction between the molecular circadian clock and monocytes/macrophages effector function in inflammatory lung diseases. The use of SR1001 leads to inflammatory resolution in vitro and in vivo and represents a promising clock-based therapeutic approach for chronic pulmonary diseases such as asthma

    Factoring - Risikomanagement und Factoringpraxis

    No full text
    Thomas BärnthalerKlagenfurt, Alpen-Adria-Univ., Dipl.-Arb., 2012(VLID)241049

    Agonism of Prostaglandin E2 Receptor 4 Ameliorates Tubulointerstitial Injury in Nephrotoxic Serum Nephritis in Mice

    No full text
    Selectively targeting the E-type prostanoid receptor 4 (EP4) might be a new therapeutic option in the treatment of glomerulonephritis (GN), since the EP4 receptor is expressed on different immune cells, resident kidney cells, and endothelial cells, which are all involved in the pathogenesis of immune-complex GN. This study aimed to evaluate the therapeutic potential and to understand the mode of action of EP4 agonist in immune-complex GN using the murine model of nephrotoxic serum nephritis (NTS). In vivo, NTS mice were treated two times daily with two different doses of an EP4 agonist ONO AE1-329 or vehicle for 14 days total. The effect of PGE2 and EP4 agonism and antagonism was tested on murine distal convoluted tubular epithelial cells (DCT) in vitro. In vivo, the higher dose of the EP4 agonist led to an improved NTS phenotype, including a reduced tubular injury score and reduced neutrophil gelatinase-associated lipocalin (NGAL) and blood urea nitrogen (BUN) levels. EP4 agonist treatment caused decreased CD4+ T cell infiltration into the kidney and increased proliferative capacity of tubular cells. Injection of the EP4 agonist resulted in dose-dependent vasodilation and hypotensive episodes. The low-dose EP4 agonist treatment resulted in less pronounced episodes of hypotension. In vitro, EP4 agonism resulted in cAMP production and increased distal convoluted tubular (DCT) proliferation. Taken together, EP4 agonism improved the NTS phenotype by various mechanisms, including reduced blood pressure, decreased CD4+ T cell infiltration, and a direct effect on tubular cells leading to increased proliferation probably by increasing cAMP levels

    G protein-coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1

    Get PDF
    The putative cannabinoid receptor GPR55 has been shown to play a tumor-promoting role in various cancers, and is involved in many physiological and pathological processes of the gastrointestinal (GI) tract. While the cannabinoid receptor 1 (CB1 ) has been reported to suppress intestinal tumor growth, the role of GPR55 in the development of GI cancers is unclear. We, therefore, aimed at elucidating the role of GPR55 in colorectal cancer (CRC), the third most common cancer worldwide. Using azoxymethane (AOM)- and dextran sulfate sodium (DSS)-driven CRC mouse models, we found that GPR55 plays a tumor-promoting role that involves alterations of leukocyte populations, i.e. myeloid-derived suppressor cells and T lymphocytes, within the tumor tissues. Concomitantly, expression levels of COX-2 and STAT3 were reduced in tumor tissue of GPR55 knockout mice, indicating reduced presence of tumor-promoting factors. By employing the experimental CRC models to CB1 knockout and CB1 /GPR55 double knockout mice, we can further show that GPR55 plays an opposing role to CB1 . We report that GPR55 and CB1 mRNA expression are differentially regulated in the experimental models and in a cohort of 86 CRC patients. Epigenetic methylation of CNR1 and GPR55 was also differentially regulated in human CRC tissue compared to control samples. Collectively, our data suggest that GPR55 and CB1 play differential roles in colon carcinogenesis where the former seems to act as oncogene and the latter as tumor suppressor

    The role of PGE2 in alveolar epithelial and lung microvascular endothelial crosstalk

    No full text
    Disruption of the blood-air barrier, which is formed by lung microvascular endothelial and alveolar epithelial cells, is a hallmark of acute lung injury. It was shown that alveolar epithelial cells release an unidentified soluble factor that enhances the barrier function of lung microvascular endothelial cells. In this study we reveal that primarily prostaglandin (PG) E2 accounts for this endothelial barrier-promoting activity. Conditioned media from alveolar epithelial cells (primary ATI-like cells) collected from BALB/c mice and A549 cells increased the electrical resistance of pulmonary human microvascular endothelial cells, respectively. This effect was reversed by pretreating alveolar epithelial cells with a cyclooxygenase-2 inhibitor or by blockade of EP4 receptors on endothelial cells, and in A549 cells also by blocking the sphingosine-1-phosphate1 receptor. Cyclooxygenase-2 was constitutively expressed in A549 cells and in primary ATI-like cells, and was upregulated by lipopolysaccharide treatment. This was accompanied by enhanced PGE2 secretion into conditioned media. Therefore, we conclude that epithelium-derived PGE2 is a key regulator of endothelial barrier integrity via EP4 receptors under physiologic and inflammatory conditions. Given that pharmacologic treatment options are still unavailable for diseases with compromised air-blood barrier, like acute lung injury, our data thus support the therapeutic potential of selective EP4 receptor agonists

    Monoacylglycerol lipase deficiency in the tumor microenvironment slows tumor growth in non-small cell lung cancer

    No full text
    Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. NaĂŻve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-Îł, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC

    Only Subclinical Alterations in the Haemostatic System of People with Diabetes after COVID-19 Vaccination

    No full text
    People with diabetes have an increased risk of experiencing adverse COVID-19 outcomes. COVID-19 vaccination is, therefore, highly recommended. However, people with diabetes have an inherently elevated risk of thrombotic events and the impact of the vaccination on the coagulation system in this patient population remains to be elucidated. The aim of this study was to investigate the impact of COVID-19 vaccination on the haemostatic system in people with type 1 or type 2 diabetes. We evaluated the effects of COVID-19 vaccination (BioNTech Pfizer, Moderna, AstraZeneca) on standard coagulation parameters, whole blood coagulation (Thrombelastometry), platelet function (impedance aggregation), and thrombin generation (calibrated automated thrombography) in people with type 1 diabetes mellitus (n = 41) and type 2 diabetes mellitus (n = 37). Blood sampling points were prior to vaccination and two weeks after the respective vaccination. Thrombelastometry measurements indicated moderately increased clot formation post-vaccination in people with type 1, as well as with type 2, diabetes: “Clot formation times” were significantly shorter, and both “maximum clot firmness” and “alpha angles” were significantly higher, as compared to the respective pre-vaccination values. Therefore, TEM parameters were not altered after vaccination in patients receiving ASA. Moreover, platelet aggregation was enhanced in people with type 1 diabetes, and plasma levels of D-Dimer were increased in people with type 2 diabetes, following COVID-19 vaccination. All other standard coagulation parameters, as well as thrombin generation, were not affected by the vaccination. The coagulation responses of people with diabetes to COVID-19 vaccination were only subclinical and comparable to those observed in healthy individuals. Our findings suggest that people with diabetes do not face an increased activation of the coagulation post-vaccination

    Blockade of prostaglandin E2 receptor 4 ameliorates nephrotoxic serum nephritis

    No full text
    Prostaglandin E-2 (PGE(2)) signaling is known to modulate inflammation and vascular resistance. Receptors of PGE(2) [E-type prostanoid receptors (EP)] might be an attractive pharmacological target in immune-mediated diseases such as glomerulonephritis. We hypothesized that selective EP4 antagonism improves nephrotoxic serum nephritis (NTS) by its anti-inflammatory properties. Mice were subjected to NTS and treated with the EP4 antagonist ONO AE3-208 (10 mg.kg body wt(-1).day(-1)] or vehicle starting from disease initiation. In one set of experiments treatment was started 4 days after NTS induction. Tubular epithelial cells were evaluated in vitro under starving conditions. EP4 antagonist treatment significantly improved the NTS phenotype without affecting blood pressure levels. Remarkably, the improved NTS phenotype was also observed when treatment was started 4 days after NTS induction. EP4 antagonism decreased tubular chemokine (C-X-C motif) ligand (Cxcl) 1 and Cxcl-5 expression and thereby subsequently reduced interstitial neutrophil infiltration into the kidney. In vitro, tubular epithelial cells increasingly express Cxcl-5 mRNA and Cxcl-5 protein when treated with PGE(2) or an EP4 agonist under starving conditions, which is blunted by EP4 antagonist treatment. Together, EP4 antagonism improves the NTS phenotype probably by decreasing mainly Cxcl-5 production in tubular cells thereby reducing renal neutrophil infiltration
    corecore