169 research outputs found

    Genomic data sampling and its effect on classification performance assessment

    Get PDF
    BACKGROUND: Supervised classification is fundamental in bioinformatics. Machine learning models, such as neural networks, have been applied to discover genes and expression patterns. This process is achieved by implementing training and test phases. In the training phase, a set of cases and their respective labels are used to build a classifier. During testing, the classifier is used to predict new cases. One approach to assessing its predictive quality is to estimate its accuracy during the test phase. Key limitations appear when dealing with small-data samples. This paper investigates the effect of data sampling techniques on the assessment of neural network classifiers. RESULTS: Three data sampling techniques were studied: Cross-validation, leave-one-out, and bootstrap. These methods are designed to reduce the bias and variance of small-sample estimations. Two prediction problems based on small-sample sets were considered: Classification of microarray data originating from a leukemia study and from small, round blue-cell tumours. A third problem, the prediction of splice-junctions, was analysed to perform comparisons. Different accuracy estimations were produced for each problem. The variations are accentuated in the small-data samples. The quality of the estimates depends on the number of train-test experiments and the amount of data used for training the networks. CONCLUSION: The predictive quality assessment of biomolecular data classifiers depends on the data size, sampling techniques and the number of train-test experiments. Conservative and optimistic accuracy estimations can be obtained by applying different methods. Guidelines are suggested to select a sampling technique according to the complexity of the prediction problem under consideration

    An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors

    Get PDF
    BACKGROUND: The analysis of large-scale gene expression data is a fundamental approach to functional genomics and the identification of potential drug targets. Results derived from such studies cannot be trusted unless they are adequately designed and reported. The purpose of this study is to assess current practices on the reporting of experimental design and statistical analyses in gene expression-based studies. METHODS: We reviewed hundreds of MEDLINE-indexed papers involving gene expression data analysis, which were published between 2003 and 2005. These papers were examined on the basis of their reporting of several factors, such as sample size, statistical power and software availability. RESULTS: Among the examined papers, we concentrated on 293 papers consisting of applications and new methodologies. These papers did not report approaches to sample size and statistical power estimation. Explicit statements on data transformation and descriptions of the normalisation techniques applied prior to data analyses (e.g. classification) were not reported in 57 (37.5%) and 104 (68.4%) of the methodology papers respectively. With regard to papers presenting biomedical-relevant applications, 41(29.1 %) of these papers did not report on data normalisation and 83 (58.9%) did not describe the normalisation technique applied. Clustering-based analysis, the t-test and ANOVA represent the most widely applied techniques in microarray data analysis. But remarkably, only 5 (3.5%) of the application papers included statements or references to assumption about variance homogeneity for the application of the t-test and ANOVA. There is still a need to promote the reporting of software packages applied or their availability. CONCLUSION: Recently-published gene expression data analysis studies may lack key information required for properly assessing their design quality and potential impact. There is a need for more rigorous reporting of important experimental factors such as statistical power and sample size, as well as the correct description and justification of statistical methods applied. This paper highlights the importance of defining a minimum set of information required for reporting on statistical design and analysis of expression data. By improving practices of statistical analysis reporting, the scientific community can facilitate quality assurance and peer-review processes, as well as the reproducibility of results

    Identification of dilated cardiomyopathy signature genes through gene expression and network data integration

    Get PDF
    AbstractDilated cardiomyopathy (DCM) is a leading cause of heart failure (HF) and cardiac transplantations in Western countries. Single-source gene expression analysis studies have identified potential disease biomarkers and drug targets. However, because of the diversity of experimental settings and relative lack of data, concerns have been raised about the robustness and reproducibility of the predictions. This study presents the identification of robust and reproducible DCM signature genes based on the integration of several independent data sets and functional network information. Gene expression profiles from three public data sets containing DCM and non-DCM samples were integrated and analyzed, which allowed the implementation of clinical diagnostic models. Differentially expressed genes were evaluated in the context of a global protein–protein interaction network, constructed as part of this study. Potential associations with HF were identified by searching the scientific literature. From these analyses, classification models were built and their effectiveness in differentiating between DCM and non-DCM samples was estimated. The main outcome was a set of integrated, potentially novel DCM signature genes, which may be used as reliable disease biomarkers. An empirical demonstration of the power of the integrative classification models against single-source models is also given

    Non-linear mapping for exploratory data analysis in functional genomics

    Get PDF
    BACKGROUND: Several supervised and unsupervised learning tools are available to classify functional genomics data. However, relatively less attention has been given to exploratory, visualisation-driven approaches. Such approaches should satisfy the following factors: Support for intuitive cluster visualisation, user-friendly and robust application, computational efficiency and generation of biologically meaningful outcomes. This research assesses a relaxation method for non-linear mapping that addresses these concerns. Its applications to gene expression and protein-protein interaction data analyses are investigated RESULTS: Publicly available expression data originating from leukaemia, round blue-cell tumours and Parkinson disease studies were analysed. The method distinguished relevant clusters and critical analysis areas. The system does not require assumptions about the inherent class structure of the data, its mapping process is controlled by only one parameter and the resulting transformations offer intuitive, meaningful visual displays. Comparisons with traditional mapping models are presented. As a way of promoting potential, alternative applications of the methodology presented, an example of exploratory data analysis of interactome networks is illustrated. Data from the C. elegans interactome were analysed. Results suggest that this method might represent an effective solution for detecting key network hubs and for clustering biologically meaningful groups of proteins. CONCLUSION: A relaxation method for non-linear mapping provided the basis for visualisation-driven analyses using different types of data. This study indicates that such a system may represent a user-friendly and robust approach to exploratory data analysis. It may allow users to gain better insights into the underlying data structure, detect potential outliers and assess assumptions about the cluster composition of the data

    Analysis of correlation-based biomolecular networks from different omics data by fitting stochastic block models

    Get PDF
    Baum_et_al_2019_Supplementary_Figures.pdf: Supplementary Figures S1 and S2. Legends are included under each figure. sbm-for-correlation-based-networks-master.zip: Archived source code of R and Python functions for the analyses and example workflow description at time of publication. Files are maintained at https://gitlab.com/biomodlih/sbm-for-correlation-based-networks and https://gitlab.com/kabaum/sbm-for-correlation-based-networks
    • …
    corecore